refactor-for-testability #3

Merged
johnnylee merged 26 commits from refactor-for-testability into main 2025-03-01 20:02:27 +00:00
36 changed files with 2763 additions and 130 deletions
Showing only changes of commit 6b3216f2d2 - Show all commits

132
peer/connreader2.go Normal file
View File

@ -0,0 +1,132 @@
package peer
import (
"io"
"log"
"net/netip"
"sync/atomic"
)
type ConnReader struct {
// Input
readFromUDPAddrPort func([]byte) (int, netip.AddrPort, error)
// Output
iface io.Writer
forwardData func(ip byte, pkt []byte)
handleControlMsg func(pkt any)
localIP byte
rt *atomic.Pointer[RoutingTable]
buf []byte
decBuf []byte
}
func NewConnReader(
readFromUDPAddrPort func([]byte) (int, netip.AddrPort, error),
iface io.Writer,
forwardData func(ip byte, pkt []byte),
handleControlMsg func(pkt any),
rt *atomic.Pointer[RoutingTable],
) *ConnReader {
return &ConnReader{
readFromUDPAddrPort: readFromUDPAddrPort,
iface: iface,
forwardData: forwardData,
handleControlMsg: handleControlMsg,
localIP: rt.Load().LocalIP,
rt: rt,
buf: newBuf(),
decBuf: newBuf(),
}
}
func (r *ConnReader) Run() {
for {
r.handleNextPacket()
}
}
func (r *ConnReader) handleNextPacket() {
buf := r.buf[:bufferSize]
n, remoteAddr, err := r.readFromUDPAddrPort(buf)
if err != nil {
log.Fatalf("Failed to read from UDP port: %v", err)
}
if n < headerSize {
return
}
remoteAddr = netip.AddrPortFrom(remoteAddr.Addr().Unmap(), remoteAddr.Port())
buf = buf[:n]
h := parseHeader(buf)
peer := r.rt.Load().Peers[h.SourceIP]
//peer := rt.Peers[h.SourceIP]
switch h.StreamID {
case controlStreamID:
r.handleControlPacket(remoteAddr, peer, h, buf)
case dataStreamID:
r.handleDataPacket(peer, h, buf)
default:
r.logf("Unknown stream ID: %d", h.StreamID)
}
}
func (r *ConnReader) handleControlPacket(
remoteAddr netip.AddrPort,
peer RemotePeer,
h header,
enc []byte,
) {
if peer.ControlCipher == nil {
return
}
if h.DestIP != r.localIP {
r.logf("Incorrect destination IP on control packet: %d", h.DestIP)
return
}
msg, err := peer.DecryptControlPacket(remoteAddr, h, enc, r.decBuf)
if err != nil {
r.logf("Failed to decrypt control packet: %v", err)
return
}
r.handleControlMsg(msg)
}
func (r *ConnReader) handleDataPacket(
peer RemotePeer,
h header,
enc []byte,
) {
if !peer.Up {
r.logf("Not connected (recv).")
return
}
data, err := peer.DecryptDataPacket(h, enc, r.decBuf)
if err != nil {
r.logf("Failed to decrypt data packet: %v", err)
return
}
if h.DestIP == r.localIP {
if _, err := r.iface.Write(data); err != nil {
log.Fatalf("Failed to write to interface: %v", err)
}
return
}
r.forwardData(h.DestIP, data)
}
func (r *ConnReader) logf(format string, args ...any) {
log.Printf("[ConnReader] "+format, args...)
}

View File

@ -109,7 +109,7 @@ func newConnReadeTestHarness() (h connReaderTestHarness) {
func TestConnReader_handleControlPacket(t *testing.T) {
h := newConnReadeTestHarness()
pkt := synPacket{TraceID: 1234}
pkt := PacketSyn{TraceID: 1234}
h.WRemote.SendControlPacket(pkt, h.Remote)
@ -119,7 +119,7 @@ func TestConnReader_handleControlPacket(t *testing.T) {
t.Fatal(h.Super.Messages)
}
msg := h.Super.Messages[0].(controlMsg[synPacket])
msg := h.Super.Messages[0].(controlMsg[PacketSyn])
if !reflect.DeepEqual(pkt, msg.Packet) {
t.Fatal(msg.Packet)
}
@ -141,7 +141,7 @@ func TestConnReader_handleNextPacket_short(t *testing.T) {
func TestConnReader_handleNextPacket_unknownStreamID(t *testing.T) {
h := newConnReadeTestHarness()
pkt := synPacket{TraceID: 1234}
pkt := PacketSyn{TraceID: 1234}
encrypted := encryptControlPacket(1, h.Remote, pkt, newBuf(), newBuf())
var header header
@ -160,7 +160,7 @@ func TestConnReader_handleNextPacket_unknownStreamID(t *testing.T) {
func TestConnReader_handleControlPacket_noCipher(t *testing.T) {
h := newConnReadeTestHarness()
pkt := synPacket{TraceID: 1234}
pkt := PacketSyn{TraceID: 1234}
//encrypted := h.WRemote.encryptControlPacket(pkt, h.Remote)
encrypted := encryptControlPacket(1, h.Remote, pkt, newBuf(), newBuf())
@ -180,7 +180,7 @@ func TestConnReader_handleControlPacket_noCipher(t *testing.T) {
func TestConnReader_handleControlPacket_incorrectDest(t *testing.T) {
h := newConnReadeTestHarness()
pkt := synPacket{TraceID: 1234}
pkt := PacketSyn{TraceID: 1234}
encrypted := encryptControlPacket(2, h.Remote, pkt, newBuf(), newBuf())
var header header
@ -199,7 +199,7 @@ func TestConnReader_handleControlPacket_incorrectDest(t *testing.T) {
func TestConnReader_handleControlPacket_modified(t *testing.T) {
h := newConnReadeTestHarness()
pkt := synPacket{TraceID: 1234}
pkt := PacketSyn{TraceID: 1234}
encrypted := encryptControlPacket(2, h.Remote, pkt, newBuf(), newBuf())
encrypted[len(encrypted)-1]++
@ -237,10 +237,10 @@ func TestConnReader_handleControlPacket_unknownPacketType(t *testing.T) {
func TestConnReader_handleControlPacket_duplicate(t *testing.T) {
h := newConnReadeTestHarness()
pkt := ackPacket{TraceID: 1234}
pkt := PacketAck{TraceID: 1234}
h.WRemote.SendControlPacket(pkt, h.Remote)
*h.Remote.Counter = *h.Remote.Counter - 1
*h.Remote.counter = *h.Remote.counter - 1
h.WRemote.SendControlPacket(pkt, h.Remote)
h.R.handleNextPacket()
@ -250,7 +250,7 @@ func TestConnReader_handleControlPacket_duplicate(t *testing.T) {
t.Fatal(h.Super.Messages)
}
msg := h.Super.Messages[0].(controlMsg[ackPacket])
msg := h.Super.Messages[0].(controlMsg[PacketAck])
if !reflect.DeepEqual(pkt, msg.Packet) {
t.Fatal(msg.Packet)
}
@ -301,7 +301,7 @@ func TestConnReader_handleDataPacket_duplicate(t *testing.T) {
pkt := make([]byte, 123)
h.WRemote.SendDataPacket(pkt, h.Remote)
*h.Remote.Counter = *h.Remote.Counter - 1
*h.Remote.counter = *h.Remote.counter - 1
h.WRemote.SendDataPacket(pkt, h.Remote)
h.R.handleNextPacket()

View File

@ -37,13 +37,13 @@ func newConnWriter(conn udpWriter, localIP byte) *connWriter {
}
// Not safe for concurrent use. Should only be called by supervisor.
func (w *connWriter) SendControlPacket(pkt marshaller, peer *RemotePeer) {
func (w *connWriter) SendControlPacket(pkt Marshaller, peer *RemotePeer) {
enc := encryptControlPacket(w.localIP, peer, pkt, w.cBuf1, w.cBuf2)
w.writeTo(enc, peer.DirectAddr)
}
// Relay control packet. Peer must not be nil.
func (w *connWriter) RelayControlPacket(pkt marshaller, peer, relay *RemotePeer) {
func (w *connWriter) RelayControlPacket(pkt Marshaller, peer, relay *RemotePeer) {
enc := encryptControlPacket(w.localIP, peer, pkt, w.cBuf1, w.cBuf2)
enc = encryptDataPacket(w.localIP, peer.IP, relay, enc, w.cBuf1)
w.writeTo(enc, relay.DirectAddr)

109
peer/connwriter2.go Normal file
View File

@ -0,0 +1,109 @@
package peer
import (
"log"
"net/netip"
"sync"
"sync/atomic"
)
type ConnWriter struct {
wLock sync.Mutex // Lock around for sending on UDP Conn.
// Output.
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error)
// Shared state.
rt *atomic.Pointer[RoutingTable]
// For sending control packets.
cBuf1 []byte
cBuf2 []byte
// For sending data packets.
dBuf1 []byte
dBuf2 []byte
}
func NewConnWriter(
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error),
rt *atomic.Pointer[RoutingTable],
) *ConnWriter {
return &ConnWriter{
writeToUDPAddrPort: writeToUDPAddrPort,
rt: rt,
cBuf1: newBuf(),
cBuf2: newBuf(),
dBuf1: newBuf(),
dBuf2: newBuf(),
}
}
// Called by ConnReader to forward already encrypted bytes to another peer.
func (w *ConnWriter) Forward(ip byte, pkt []byte) {
peer := w.rt.Load().Peers[ip]
if !(peer.Up && peer.Direct) {
w.logf("Failed to forward to %d.", ip)
return
}
w.writeTo(pkt, peer.DirectAddr)
}
// Called by IFReader to send data. Encryption will be applied, and packet will
// be relayed if appropriate.
func (w *ConnWriter) WriteData(ip byte, pkt []byte) {
rt := w.rt.Load()
peer := rt.Peers[ip]
if !peer.Up {
w.logf("Failed to send data to %d.", ip)
return
}
enc := peer.EncryptDataPacket(ip, pkt, w.dBuf1)
if peer.Direct {
w.writeTo(enc, peer.DirectAddr)
return
}
relay, ok := rt.GetRelay()
if !ok {
w.logf("Failed to send data to %d. No relay.", ip)
return
}
enc = relay.EncryptDataPacket(ip, enc, w.dBuf2)
w.writeTo(enc, relay.DirectAddr)
}
// Called by Supervisor to send control packets.
func (w *ConnWriter) WriteControl(peer RemotePeer, pkt Marshaller) {
enc := peer.EncryptControlPacket(pkt, w.cBuf2, w.cBuf1)
if peer.Direct {
w.writeTo(enc, peer.DirectAddr)
return
}
rt := w.rt.Load()
relay, ok := rt.GetRelay()
if !ok {
w.logf("Failed to send control to %d. No relay.", peer.IP)
return
}
enc = relay.EncryptDataPacket(peer.IP, enc, w.cBuf2)
w.writeTo(enc, relay.DirectAddr)
}
func (w *ConnWriter) writeTo(pkt []byte, addr netip.AddrPort) {
w.wLock.Lock()
if _, err := w.writeToUDPAddrPort(pkt, addr); err != nil {
w.logf("Failed to write to UDP port: %v", err)
}
w.wLock.Unlock()
}
func (w *ConnWriter) logf(s string, args ...any) {
log.Printf("[ConnWriter] "+s, args...)
}

145
peer/connwriter2_test.go Normal file
View File

@ -0,0 +1,145 @@
package peer
import (
"testing"
)
func TestConnWriter_WriteData_direct(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
in := RandPacket()
p1.ConnWriter.WriteData(2, in)
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteData_peerNotUp(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
p1.RT.Load().Peers[2].Up = false
in := RandPacket()
p1.ConnWriter.WriteData(2, in)
packets := p2.Conn.Packets()
if len(packets) != 0 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteData_relay(t *testing.T) {
p1, _, p3 := NewPeersForTesting()
p1.RT.Load().Peers[2].Direct = false
p1.RT.Load().RelayIP = 3
in := RandPacket()
p1.ConnWriter.WriteData(2, in)
packets := p3.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteData_relayNotAvailable(t *testing.T) {
p1, _, p3 := NewPeersForTesting()
p1.RT.Load().Peers[2].Direct = false
p1.RT.Load().Peers[3].Up = false
p1.RT.Load().RelayIP = 3
in := RandPacket()
p1.ConnWriter.WriteData(2, in)
packets := p3.Conn.Packets()
if len(packets) != 0 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteControl_direct(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := PacketProbe{TraceID: newTraceID()}
p1.ConnWriter.WriteControl(p1.RT.Load().Peers[2], orig)
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteControl_relay(t *testing.T) {
p1, _, p3 := NewPeersForTesting()
p1.RT.Load().Peers[2].Direct = false
p1.RT.Load().RelayIP = 3
orig := PacketProbe{TraceID: newTraceID()}
p1.ConnWriter.WriteControl(p1.RT.Load().Peers[2], orig)
packets := p3.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestConnWriter_WriteControl_relayNotAvailable(t *testing.T) {
p1, _, p3 := NewPeersForTesting()
p1.RT.Load().Peers[2].Direct = false
p1.RT.Load().Peers[3].Up = false
p1.RT.Load().RelayIP = 3
orig := PacketProbe{TraceID: newTraceID()}
p1.ConnWriter.WriteControl(p1.RT.Load().Peers[2], orig)
packets := p3.Conn.Packets()
if len(packets) != 0 {
t.Fatal(packets)
}
}
func TestConnWriter__Forward(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
in := RandPacket()
p1.ConnWriter.Forward(2, in)
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestConnWriter__Forward_notUp(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
p1.RT.Load().Peers[2].Up = false
in := RandPacket()
p1.ConnWriter.Forward(2, in)
packets := p2.Conn.Packets()
if len(packets) != 0 {
t.Fatal(packets)
}
}
func TestConnWriter__Forward_notDirect(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
p1.RT.Load().Peers[2].Direct = false
in := RandPacket()
p1.ConnWriter.Forward(2, in)
packets := p2.Conn.Packets()
if len(packets) != 0 {
t.Fatal(packets)
}
}

View File

@ -17,25 +17,25 @@ type controlMsg[T any] struct {
func parseControlMsg(srcIP byte, srcAddr netip.AddrPort, buf []byte) (any, error) {
switch buf[0] {
case packetTypeSyn:
packet, err := parseSynPacket(buf)
return controlMsg[synPacket]{
case PacketTypeSyn:
packet, err := ParsePacketSyn(buf)
return controlMsg[PacketSyn]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
}, err
case packetTypeAck:
packet, err := parseAckPacket(buf)
return controlMsg[ackPacket]{
case PacketTypeAck:
packet, err := ParsePacketAck(buf)
return controlMsg[PacketAck]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
}, err
case packetTypeProbe:
packet, err := parseProbePacket(buf)
return controlMsg[probePacket]{
case PacketTypeProbe:
packet, err := ParsePacketProbe(buf)
return controlMsg[PacketProbe]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,

View File

@ -37,13 +37,13 @@ func generateKeys() cryptoKeys {
func encryptControlPacket(
localIP byte,
peer *RemotePeer,
pkt marshaller,
pkt Marshaller,
tmp []byte,
out []byte,
) []byte {
h := header{
StreamID: controlStreamID,
Counter: atomic.AddUint64(peer.Counter, 1),
Counter: atomic.AddUint64(peer.counter, 1),
SourceIP: localIP,
DestIP: peer.IP,
}
@ -66,7 +66,7 @@ func decryptControlPacket(
return nil, errDecryptionFailed
}
if peer.DupCheck.IsDup(h.Counter) {
if peer.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
@ -89,7 +89,7 @@ func encryptDataPacket(
) []byte {
h := header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(peer.Counter, 1),
Counter: atomic.AddUint64(peer.counter, 1),
SourceIP: localIP,
DestIP: destIP,
}
@ -108,7 +108,7 @@ func decryptDataPacket(
return nil, errDecryptionFailed
}
if peer.DupCheck.IsDup(h.Counter) {
if peer.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}

View File

@ -33,7 +33,7 @@ func TestDecryptControlPacket(t *testing.T) {
out = make([]byte, bufferSize)
)
in := synPacket{
in := PacketSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
@ -47,7 +47,7 @@ func TestDecryptControlPacket(t *testing.T) {
t.Fatal(err)
}
msg, ok := iMsg.(controlMsg[synPacket])
msg, ok := iMsg.(controlMsg[PacketSyn])
if !ok {
t.Fatal(ok)
}
@ -64,7 +64,7 @@ func TestDecryptControlPacket_decryptionFailed(t *testing.T) {
out = make([]byte, bufferSize)
)
in := synPacket{
in := PacketSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
@ -90,7 +90,7 @@ func TestDecryptControlPacket_duplicate(t *testing.T) {
out = make([]byte, bufferSize)
)
in := synPacket{
in := PacketSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,

14
peer/data-flow.dot Normal file
View File

@ -0,0 +1,14 @@
digraph d {
ifReader -> connWriter;
connReader -> ifWriter;
connReader -> connWriter;
connReader -> supervisor;
mcReader -> supervisor;
supervisor -> connWriter;
supervisor -> mcWriter;
hubPoller -> supervisor;
connWriter [shape="box"];
mcWriter [shape="box"];
ifWriter [shape="box"];
}

90
peer/files.go Normal file
View File

@ -0,0 +1,90 @@
package peer
import (
"encoding/json"
"log"
"os"
"path/filepath"
"vppn/m"
)
type localConfig struct {
m.PeerConfig
PubKey []byte
PrivKey []byte
PubSignKey []byte
PrivSignKey []byte
}
func configDir(netName string) string {
d, err := os.UserHomeDir()
if err != nil {
log.Fatalf("Failed to get user home directory: %v", err)
}
return filepath.Join(d, ".vppn", netName)
}
func peerConfigPath(netName string) string {
return filepath.Join(configDir(netName), "peer-config.json")
}
func peerStatePath(netName string) string {
return filepath.Join(configDir(netName), "peer-state.json")
}
func storeJson(x any, outPath string) error {
outDir := filepath.Dir(outPath)
_ = os.MkdirAll(outDir, 0700)
tmpPath := outPath + ".tmp"
buf, err := json.Marshal(x)
if err != nil {
return err
}
f, err := os.Create(tmpPath)
if err != nil {
return err
}
if _, err := f.Write(buf); err != nil {
f.Close()
return err
}
if err := f.Sync(); err != nil {
f.Close()
return err
}
if err := f.Close(); err != nil {
return err
}
return os.Rename(tmpPath, outPath)
}
func storePeerConfig(netName string, pc localConfig) error {
return storeJson(pc, peerConfigPath(netName))
}
func storeNetworkState(netName string, ps m.NetworkState) error {
return storeJson(ps, peerStatePath(netName))
}
func loadJson(dataPath string, ptr any) error {
data, err := os.ReadFile(dataPath)
if err != nil {
return err
}
return json.Unmarshal(data, ptr)
}
func loadPeerConfig(netName string) (pc localConfig, err error) {
return pc, loadJson(peerConfigPath(netName), &pc)
}
func loadNetworkState(netName string) (ps m.NetworkState, err error) {
return ps, loadJson(peerStatePath(netName), &ps)
}

57
peer/files_test.go Normal file
View File

@ -0,0 +1,57 @@
package peer
import (
"path/filepath"
"reflect"
"testing"
)
func TestFilePaths(t *testing.T) {
confDir := configDir("netName")
if filepath.Base(confDir) != "netName" {
t.Fatal(confDir)
}
if filepath.Base(filepath.Dir(confDir)) != ".vppn" {
t.Fatal(confDir)
}
path := peerConfigPath("netName")
if path != filepath.Join(confDir, "peer-config.json") {
t.Fatal(path)
}
path = peerStatePath("netName")
if path != filepath.Join(confDir, "peer-state.json") {
t.Fatal(path)
}
}
func TestStoreLoadJson(t *testing.T) {
type Object struct {
Name string
Age int
Price float64
}
tmpDir := t.TempDir()
outPath := filepath.Join(tmpDir, "object.json")
obj := Object{
Name: "Jason",
Age: 22,
Price: 123.534,
}
if err := storeJson(obj, outPath); err != nil {
t.Fatal(err)
}
obj2 := Object{}
if err := loadJson(outPath, &obj2); err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(obj, obj2) {
t.Fatal(obj, obj2)
}
}

View File

@ -3,15 +3,21 @@ package peer
import (
"net"
"net/netip"
"time"
)
const (
bufferSize = 1536
if_mtu = 1200
if_queue_len = 2048
controlCipherOverhead = 16
dataCipherOverhead = 16
signOverhead = 64
pingInterval = 8 * time.Second
timeoutInterval = 30 * time.Second
)
var multicastAddr = net.UDPAddrFromAddrPort(netip.AddrPortFrom(

100
peer/hubpoller.go Normal file
View File

@ -0,0 +1,100 @@
package peer
import (
"encoding/json"
"io"
"log"
"net/http"
"net/url"
"time"
"vppn/m"
)
type hubPoller struct {
client *http.Client
req *http.Request
versions [256]int64
localIP byte
netName string
super controlMsgHandler
}
func newHubPoller(localIP byte, netName, hubURL, apiKey string, super controlMsgHandler) (*hubPoller, error) {
u, err := url.Parse(hubURL)
if err != nil {
return nil, err
}
u.Path = "/peer/fetch-state/"
client := &http.Client{Timeout: 8 * time.Second}
req := &http.Request{
Method: http.MethodGet,
URL: u,
Header: http.Header{},
}
req.SetBasicAuth("", apiKey)
return &hubPoller{
client: client,
req: req,
localIP: localIP,
netName: netName,
super: super,
}, nil
}
func (hp *hubPoller) Run() {
state, err := loadNetworkState(hp.netName)
if err != nil {
log.Printf("Failed to load network state: %v", err)
log.Printf("Polling hub...")
hp.pollHub()
} else {
hp.applyNetworkState(state)
}
for range time.Tick(64 * time.Second) {
hp.pollHub()
}
}
func (hp *hubPoller) pollHub() {
var state m.NetworkState
resp, err := hp.client.Do(hp.req)
if err != nil {
log.Printf("Failed to fetch peer state: %v", err)
return
}
body, err := io.ReadAll(resp.Body)
_ = resp.Body.Close()
if err != nil {
log.Printf("Failed to read body from hub: %v", err)
return
}
if err := json.Unmarshal(body, &state); err != nil {
log.Printf("Failed to unmarshal response from hub: %v\n%s", err, body)
return
}
hp.applyNetworkState(state)
if err := storeNetworkState(hp.netName, state); err != nil {
log.Printf("Failed to store network state: %v", err)
}
}
func (hp *hubPoller) applyNetworkState(state m.NetworkState) {
for i, peer := range state.Peers {
if i != int(hp.localIP) {
if peer == nil || peer.Version != hp.versions[i] {
hp.super.HandleControlMsg(peerUpdateMsg{PeerIP: byte(i), Peer: state.Peers[i]})
if peer != nil {
hp.versions[i] = peer.Version
}
}
}
}
}

78
peer/ifreader2.go Normal file
View File

@ -0,0 +1,78 @@
package peer
import (
"io"
"log"
)
type IFReader struct {
iface io.Reader
connWriter interface {
WriteData(ip byte, pkt []byte)
}
}
func NewIFReader(
iface io.Reader,
connWriter interface {
WriteData(ip byte, pkt []byte)
},
) *IFReader {
return &IFReader{iface, connWriter}
}
func (r *IFReader) Run() {
packet := newBuf()
for {
r.handleNextPacket(packet)
}
}
func (r *IFReader) handleNextPacket(packet []byte) {
packet = r.readNextPacket(packet)
if remoteIP, ok := r.parsePacket(packet); ok {
r.connWriter.WriteData(remoteIP, packet)
}
}
func (r *IFReader) readNextPacket(buf []byte) []byte {
n, err := r.iface.Read(buf[:cap(buf)])
if err != nil {
log.Fatalf("Failed to read from interface: %v", err)
}
return buf[:n]
}
func (r *IFReader) parsePacket(buf []byte) (byte, bool) {
n := len(buf)
if n == 0 {
return 0, false
}
version := buf[0] >> 4
switch version {
case 4:
if n < 20 {
r.logf("Short IPv4 packet: %d", len(buf))
return 0, false
}
return buf[19], true
case 6:
if len(buf) < 40 {
r.logf("Short IPv6 packet: %d", len(buf))
return 0, false
}
return buf[39], true
default:
r.logf("Invalid IP packet version: %v", version)
return 0, false
}
}
func (*IFReader) logf(s string, args ...any) {
log.Printf("[IFReader] "+s, args...)
}

83
peer/ifreader2_test.go Normal file
View File

@ -0,0 +1,83 @@
package peer
import (
"testing"
)
func TestIFReader_IPv4(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
pkt := make([]byte, 1234)
pkt[0] = 4 << 4
pkt[19] = 2 // IP.
p1.IFace.UserWrite(pkt)
p1.IFReader.handleNextPacket(newBuf())
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestIFReader_IPv6(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
pkt := make([]byte, 1234)
pkt[0] = 6 << 4
pkt[39] = 2 // IP.
p1.IFace.UserWrite(pkt)
p1.IFReader.handleNextPacket(newBuf())
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestIFReader_parsePacket_emptyPacket(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 0)
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}
func TestIFReader_parsePacket_invalidIPVersion(t *testing.T) {
r := NewIFReader(nil, nil)
for i := byte(1); i < 16; i++ {
if i == 4 || i == 6 {
continue
}
pkt := make([]byte, 1234)
pkt[0] = i << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(i, ip, ok)
}
}
}
func TestIFReader_parsePacket_shortIPv4(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 19)
pkt[0] = 4 << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}
func TestIFReader_parsePacket_shortIPv6(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 39)
pkt[0] = 6 << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}

View File

@ -2,7 +2,6 @@ package peer
import (
"bytes"
"net"
"reflect"
"sync/atomic"
"testing"
@ -34,6 +33,7 @@ func TestIFReader_parsePacket_ipv6(t *testing.T) {
}
}
/*
// Test that empty packets work as expected.
func TestIFReader_parsePacket_emptyPacket(t *testing.T) {
r := newIFReader(nil, [256]*atomic.Pointer[RemotePeer]{}, nil, nil)
@ -99,7 +99,7 @@ func TestIFReader_readNextpacket(t *testing.T) {
t.Fatalf("%s", pkt)
}
}
*/
// ----------------------------------------------------------------------------
type sentPacket struct {

View File

@ -1,5 +0,0 @@
package peer
import "io"
type ifWriter io.Writer

View File

@ -1,10 +1,19 @@
package peer
import (
"io"
"net"
"net/netip"
)
type UDPConn interface {
ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error)
WriteToUDPAddrPort([]byte, netip.AddrPort) (int, error)
WriteToUDP([]byte, *net.UDPAddr) (int, error)
}
type ifWriter io.Writer
type udpReader interface {
ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error)
}
@ -13,7 +22,11 @@ type udpWriter interface {
WriteToUDPAddrPort([]byte, netip.AddrPort) (int, error)
}
type marshaller interface {
type mcUDPWriter interface {
WriteToUDP([]byte, *net.UDPAddr) (int, error)
}
type Marshaller interface {
Marshal([]byte) []byte
}
@ -22,6 +35,11 @@ type dataPacketSender interface {
RelayDataPacket(pkt []byte, peer, relay *RemotePeer)
}
type controlPacketSender interface {
SendControlPacket(pkt Marshaller, peer *RemotePeer)
RelayControlPacket(pkt Marshaller, peer, relay *RemotePeer)
}
type encryptedPacketSender interface {
SendEncryptedDataPacket(pkt []byte, peer *RemotePeer)
}
@ -29,7 +47,3 @@ type encryptedPacketSender interface {
type controlMsgHandler interface {
HandleControlMsg(pkt any)
}
type mcUDPWriter interface {
WriteToUDP([]byte, *net.UDPAddr) (int, error)
}

View File

@ -50,7 +50,7 @@ func (r *mcReader) handleNextPacket() {
return
}
r.super.HandleControlMsg(controlMsg[localDiscoveryPacket]{
r.super.HandleControlMsg(controlMsg[PacketLocalDiscovery]{
SrcIP: h.SourceIP,
SrcAddr: remoteAddr,
})

138
peer/mcreader_test.go Normal file
View File

@ -0,0 +1,138 @@
package peer
import (
"bytes"
"net"
"net/netip"
"sync/atomic"
"testing"
)
type mcMockConn struct {
packets chan []byte
}
func newMCMockConn() *mcMockConn {
return &mcMockConn{make(chan []byte, 32)}
}
func (c *mcMockConn) WriteToUDP(in []byte, addr *net.UDPAddr) (int, error) {
c.packets <- bytes.Clone(in)
return len(in), nil
}
func (c *mcMockConn) ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error) {
buf := <-c.packets
b = b[:len(buf)]
copy(b, buf)
return len(b), netip.AddrPort{}, nil
}
func TestMCReader(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 1, keys.PrivSignKey)
r := newMCReader(conn, super, peers)
w.SendLocalDiscovery()
r.handleNextPacket()
if len(super.Messages) != 1 {
t.Fatal(super.Messages)
}
msg, ok := super.Messages[0].(controlMsg[PacketLocalDiscovery])
if !ok || msg.SrcIP != 1 {
t.Fatal(ok, msg)
}
}
func TestMCReader_noHeader(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
r := newMCReader(conn, super, peers)
conn.WriteToUDP([]byte("0123546789"), nil)
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}
func TestMCReader_noPeer(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[2] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 2, keys.PrivSignKey)
r := newMCReader(conn, super, peers)
w.SendLocalDiscovery()
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}
func TestMCReader_badSignature(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 1, keys.PrivSignKey)
w.SendLocalDiscovery()
// Break signing.
packet := <-conn.packets
packet[0]++
conn.packets <- packet
r := newMCReader(conn, super, peers)
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}

31
peer/mock-iface_test.go Normal file
View File

@ -0,0 +1,31 @@
package peer
import "bytes"
type TestIFace struct {
out *bytes.Buffer // Toward the network.
in *bytes.Buffer // From the network
}
func NewTestIFace() *TestIFace {
return &TestIFace{
out: &bytes.Buffer{},
in: &bytes.Buffer{},
}
}
func (iface *TestIFace) Write(b []byte) (int, error) {
return iface.in.Write(b)
}
func (iface *TestIFace) Read(b []byte) (int, error) {
return iface.out.Read(b)
}
func (iface *TestIFace) UserWrite(b []byte) (int, error) {
return iface.out.Write(b)
}
func (iface *TestIFace) UserRead(b []byte) (int, error) {
return iface.in.Read(b)
}

80
peer/mock-network_test.go Normal file
View File

@ -0,0 +1,80 @@
package peer
import (
"bytes"
"net"
"net/netip"
"sync"
)
type TestPacket struct {
Addr netip.AddrPort
Data []byte
}
type TestNetwork struct {
lock sync.Mutex
packets map[netip.AddrPort]chan TestPacket
}
func NewTestNetwork() *TestNetwork {
return &TestNetwork{packets: map[netip.AddrPort]chan TestPacket{}}
}
func (n *TestNetwork) NewUDPConn(localAddr netip.AddrPort) *TestUDPConn {
n.lock.Lock()
defer n.lock.Unlock()
if _, ok := n.packets[localAddr]; !ok {
n.packets[localAddr] = make(chan TestPacket, 1024)
}
return &TestUDPConn{
addr: localAddr,
n: n,
packets: n.packets[localAddr],
}
}
func (n *TestNetwork) write(b []byte, from, to netip.AddrPort) {
n.lock.Lock()
defer n.lock.Unlock()
if _, ok := n.packets[to]; !ok {
n.packets[to] = make(chan TestPacket, 1024)
}
n.packets[to] <- TestPacket{
Addr: from,
Data: bytes.Clone(b),
}
}
type TestUDPConn struct {
addr netip.AddrPort
n *TestNetwork
packets chan TestPacket
}
func (c *TestUDPConn) WriteToUDPAddrPort(b []byte, addr netip.AddrPort) (int, error) {
c.n.write(b, c.addr, addr)
return len(b), nil
}
func (c *TestUDPConn) WriteToUDP(b []byte, addr *net.UDPAddr) (int, error) {
return c.WriteToUDPAddrPort(b, addr.AddrPort())
}
func (c *TestUDPConn) ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error) {
pkt := <-c.packets
b = b[:len(pkt.Data)]
copy(b, pkt.Data)
return len(b), pkt.Addr, nil
}
func (c *TestUDPConn) Packets() (out []TestPacket) {
for {
select {
case pkt := <-c.packets:
out = append(out, pkt)
default:
return
}
}
}

View File

@ -70,7 +70,7 @@ func (w *binWriter) AddrPort(addrPort netip.AddrPort) *binWriter {
return w.Uint16(addrPort.Port())
}
func (w *binWriter) AddrPortArray(l [8]netip.AddrPort) *binWriter {
func (w *binWriter) AddrPort8(l [8]netip.AddrPort) *binWriter {
for _, addrPort := range l {
w.AddrPort(addrPort)
}
@ -178,7 +178,7 @@ func (r *binReader) AddrPort(x *netip.AddrPort) *binReader {
return r
}
func (r *binReader) AddrPortArray(x *[8]netip.AddrPort) *binReader {
func (r *binReader) AddrPort8(x *[8]netip.AddrPort) *binReader {
for i := range x {
r.AddrPort(&x[i])
}

View File

@ -6,6 +6,26 @@ import (
"testing"
)
func TestBinWriteRead_invalidAddrPort(t *testing.T) {
addr := netip.AddrPort{}
buf := make([]byte, 1024)
buf = newBinWriter(buf).
AddrPort(addr).
Build()
var addr2 netip.AddrPort
err := newBinReader(buf).
AddrPort(&addr2).
Error()
if err != nil {
t.Fatal(err)
}
if addr2.IsValid() {
t.Fatal(addr, addr2)
}
}
func TestBinWriteRead(t *testing.T) {
buf := make([]byte, 1024)
@ -35,7 +55,7 @@ func TestBinWriteRead(t *testing.T) {
Byte(in.Type).
Uint64(in.TraceID).
AddrPort(in.DestAddr).
AddrPortArray(in.Addrs).
AddrPort8(in.Addrs).
Build()
out := Item{}
@ -44,7 +64,7 @@ func TestBinWriteRead(t *testing.T) {
Byte(&out.Type).
Uint64(&out.TraceID).
AddrPort(&out.DestAddr).
AddrPortArray(&out.Addrs).
AddrPort8(&out.Addrs).
Error()
if err != nil {
t.Fatal(err)

View File

@ -5,93 +5,70 @@ import (
)
const (
packetTypeSyn = iota + 1
packetTypeSynAck
packetTypeAck
packetTypeProbe
packetTypeAddrDiscovery
PacketTypeSyn = iota + 1
PacketTypeSynAck
PacketTypeAck
PacketTypeProbe
PacketTypeAddrDiscovery
)
// ----------------------------------------------------------------------------
type synPacket struct {
type PacketSyn struct {
TraceID uint64 // TraceID to match response w/ request.
// TODO: SentAt int64 // Unixmilli.
//SentAt int64 // Unixmilli.
//SharedKeyType byte // Currently only 1 is supported for AES.
SharedKey [32]byte // Our shared key.
Direct bool
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p synPacket) Marshal(buf []byte) []byte {
func (p PacketSyn) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeSyn).
Byte(PacketTypeSyn).
Uint64(p.TraceID).
//Int64(p.SentAt).
//Byte(p.SharedKeyType).
SharedKey(p.SharedKey).
Bool(p.Direct).
AddrPort(p.PossibleAddrs[0]).
AddrPort(p.PossibleAddrs[1]).
AddrPort(p.PossibleAddrs[2]).
AddrPort(p.PossibleAddrs[3]).
AddrPort(p.PossibleAddrs[4]).
AddrPort(p.PossibleAddrs[5]).
AddrPort(p.PossibleAddrs[6]).
AddrPort(p.PossibleAddrs[7]).
AddrPort8(p.PossibleAddrs).
Build()
}
func parseSynPacket(buf []byte) (p synPacket, err error) {
func ParsePacketSyn(buf []byte) (p PacketSyn, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
//Int64(&p.SentAt).
//Byte(&p.SharedKeyType).
SharedKey(&p.SharedKey).
Bool(&p.Direct).
AddrPort(&p.PossibleAddrs[0]).
AddrPort(&p.PossibleAddrs[1]).
AddrPort(&p.PossibleAddrs[2]).
AddrPort(&p.PossibleAddrs[3]).
AddrPort(&p.PossibleAddrs[4]).
AddrPort(&p.PossibleAddrs[5]).
AddrPort(&p.PossibleAddrs[6]).
AddrPort(&p.PossibleAddrs[7]).
AddrPort8(&p.PossibleAddrs).
Error()
return
}
// ----------------------------------------------------------------------------
type ackPacket struct {
type PacketAck struct {
TraceID uint64
ToAddr netip.AddrPort
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p ackPacket) Marshal(buf []byte) []byte {
func (p PacketAck) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeAck).
Byte(PacketTypeAck).
Uint64(p.TraceID).
AddrPort(p.ToAddr).
AddrPort(p.PossibleAddrs[0]).
AddrPort(p.PossibleAddrs[1]).
AddrPort(p.PossibleAddrs[2]).
AddrPort(p.PossibleAddrs[3]).
AddrPort(p.PossibleAddrs[4]).
AddrPort(p.PossibleAddrs[5]).
AddrPort(p.PossibleAddrs[6]).
AddrPort(p.PossibleAddrs[7]).
AddrPort8(p.PossibleAddrs).
Build()
}
func parseAckPacket(buf []byte) (p ackPacket, err error) {
func ParsePacketAck(buf []byte) (p PacketAck, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
AddrPort(&p.ToAddr).
AddrPort(&p.PossibleAddrs[0]).
AddrPort(&p.PossibleAddrs[1]).
AddrPort(&p.PossibleAddrs[2]).
AddrPort(&p.PossibleAddrs[3]).
AddrPort(&p.PossibleAddrs[4]).
AddrPort(&p.PossibleAddrs[5]).
AddrPort(&p.PossibleAddrs[6]).
AddrPort(&p.PossibleAddrs[7]).
AddrPort8(&p.PossibleAddrs).
Error()
return
}
@ -100,18 +77,18 @@ func parseAckPacket(buf []byte) (p ackPacket, err error) {
// A probeReqPacket is sent from a client to a server to determine if direct
// UDP communication can be used.
type probePacket struct {
type PacketProbe struct {
TraceID uint64
}
func (p probePacket) Marshal(buf []byte) []byte {
func (p PacketProbe) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeProbe).
Byte(PacketTypeProbe).
Uint64(p.TraceID).
Build()
}
func parseProbePacket(buf []byte) (p probePacket, err error) {
func ParsePacketProbe(buf []byte) (p PacketProbe, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
Error()
@ -120,4 +97,4 @@ func parseProbePacket(buf []byte) (p probePacket, err error) {
// ----------------------------------------------------------------------------
type localDiscoveryPacket struct{}
type PacketLocalDiscovery struct{}

View File

@ -1 +1,66 @@
package peer
import (
"crypto/rand"
"net/netip"
"reflect"
"testing"
)
func TestSynPacket(t *testing.T) {
p := PacketSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
}
rand.Read(p.SharedKey[:])
p.PossibleAddrs[0] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 2, 3, 4}), 234)
p.PossibleAddrs[1] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{2, 2, 3, 4}), 12399)
p.PossibleAddrs[2] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{3, 2, 3, 4}), 60000)
buf := p.Marshal(newBuf())
p2, err := ParsePacketSyn(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}
func TestAckPacket(t *testing.T) {
p := PacketAck{
TraceID: newTraceID(),
ToAddr: netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 2, 3, 4}), 234),
}
p.PossibleAddrs[0] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{8, 2, 3, 4}), 100)
p.PossibleAddrs[1] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{2, 2, 3, 4}), 12399)
p.PossibleAddrs[2] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{3, 2, 3, 4}), 60000)
buf := p.Marshal(newBuf())
p2, err := ParsePacketAck(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}
func TestProbePacket(t *testing.T) {
p := PacketProbe{
TraceID: newTraceID(),
}
buf := p.Marshal(newBuf())
p2, err := ParsePacketProbe(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}

125
peer/peer_test.go Normal file
View File

@ -0,0 +1,125 @@
package peer
import (
"bytes"
"crypto/rand"
mrand "math/rand"
"net/netip"
"sync/atomic"
)
// A test peer.
type P struct {
cryptoKeys
RT *atomic.Pointer[RoutingTable]
Conn *TestUDPConn
IFace *TestIFace
ConnWriter *ConnWriter
ConnReader *ConnReader
IFReader *IFReader
Super *Supervisor
}
func NewPeerForTesting(n *TestNetwork, ip byte, addr netip.AddrPort) P {
p := P{
cryptoKeys: generateKeys(),
RT: &atomic.Pointer[RoutingTable]{},
IFace: NewTestIFace(),
}
rt := NewRoutingTable(ip, addr)
p.RT.Store(&rt)
p.Conn = n.NewUDPConn(addr)
p.ConnWriter = NewConnWriter(p.Conn.WriteToUDPAddrPort, p.RT)
p.IFReader = NewIFReader(p.IFace, p.ConnWriter)
/*
p.ConnReader = NewConnReader(
p.Conn.ReadFromUDPAddrPort,
p.IFace,
p.ConnWriter.Forward,
p.Super.HandleControlMsg,
p.RT)
*/
return p
}
func ConnectPeers(p1, p2 *P) {
rt1 := p1.RT.Load()
rt2 := p2.RT.Load()
ip1 := rt1.LocalIP
ip2 := rt2.LocalIP
rt1.Peers[ip2].Up = true
rt1.Peers[ip2].Direct = true
rt1.Peers[ip2].Relay = true
rt1.Peers[ip2].DirectAddr = rt2.LocalAddr
rt1.Peers[ip2].PubSignKey = p2.PubSignKey
rt1.Peers[ip2].ControlCipher = newControlCipher(p1.PrivKey, p2.PubKey)
rt1.Peers[ip2].DataCipher = newDataCipher()
rt2.Peers[ip1].Up = true
rt2.Peers[ip1].Direct = true
rt2.Peers[ip1].Relay = true
rt2.Peers[ip1].DirectAddr = rt1.LocalAddr
rt2.Peers[ip1].PubSignKey = p1.PubSignKey
rt2.Peers[ip1].ControlCipher = newControlCipher(p2.PrivKey, p1.PubKey)
rt2.Peers[ip1].DataCipher = rt1.Peers[ip2].DataCipher
}
func NewPeersForTesting() (p1, p2, p3 P) {
n := NewTestNetwork()
p1 = NewPeerForTesting(
n,
1,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 1}), 100))
p2 = NewPeerForTesting(
n,
2,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 2}), 200))
p3 = NewPeerForTesting(
n,
3,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 3}), 300))
ConnectPeers(&p1, &p2)
ConnectPeers(&p1, &p3)
ConnectPeers(&p2, &p3)
return
}
func RandPacket() []byte {
n := mrand.Intn(1200)
b := make([]byte, n)
rand.Read(b)
return b
}
func ModifyPacket(in []byte) []byte {
x := make([]byte, 1)
for {
rand.Read(x)
out := bytes.Clone(in)
idx := mrand.Intn(len(out))
if out[idx] != x[0] {
out[idx] = x[0]
return out
}
}
}
// ----------------------------------------------------------------------------
type UnknownControlPacket struct {
TraceID uint64
}
func (p UnknownControlPacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).Byte(255).Uint64(p.TraceID).Build()
}

355
peer/peerstates.go Normal file
View File

@ -0,0 +1,355 @@
package peer
import (
"fmt"
"log"
"net/netip"
"strings"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
type PeerState interface {
OnPeerUpdate(*m.Peer) PeerState
OnSyn(controlMsg[PacketSyn]) PeerState
OnAck(controlMsg[PacketAck])
OnProbe(controlMsg[PacketProbe]) PeerState
OnLocalDiscovery(controlMsg[PacketLocalDiscovery])
OnPingTimer() PeerState
}
// ----------------------------------------------------------------------------
type State struct {
// Output.
publish func(RemotePeer)
sendControlPacket func(RemotePeer, Marshaller)
// Immutable data.
localIP byte
remoteIP byte
privKey []byte
localAddr netip.AddrPort // If valid, then local peer is publicly accessible.
pubAddrs *pubAddrStore
// The purpose of this state machine is to manage the RemotePeer object,
// publishing it as necessary.
staged RemotePeer // Local copy of shared data. See publish().
// Mutable peer data.
peer *m.Peer
// We rate limit per remote endpoint because if we don't we tend to lose
// packets.
limiter *ratelimiter.Limiter
}
func (s *State) OnPeerUpdate(peer *m.Peer) PeerState {
defer func() {
// Don't defer directly otherwise s.staged will be evaluated immediately
// and won't reflect changes made in the function.
s.publish(s.staged)
}()
if peer == nil {
return EnterStateDisconnected(s)
}
s.peer = peer
s.staged.Relay = false
s.staged.Direct = false
s.staged.DirectAddr = netip.AddrPort{}
s.staged.PubSignKey = nil
s.staged.PubSignKey = peer.PubSignKey
s.staged.ControlCipher = newControlCipher(s.privKey, peer.PubKey)
s.staged.DataCipher = newDataCipher()
if ip, isValid := netip.AddrFromSlice(peer.PublicIP); isValid {
s.staged.Relay = peer.Relay
s.staged.Direct = true
s.staged.DirectAddr = netip.AddrPortFrom(ip, peer.Port)
if s.localAddr.IsValid() && s.localIP < s.remoteIP {
return EnterStateServer(s)
}
return EnterStateClientDirect(s)
}
if s.localAddr.IsValid() {
s.staged.Direct = true
return EnterStateServer(s)
}
if s.localIP < s.remoteIP {
return EnterStateServer(s)
}
return EnterStateClientRelayed(s)
}
func (s *State) logf(format string, args ...any) {
b := strings.Builder{}
name := "--"
if s.peer != nil {
name = s.peer.Name
}
b.WriteString(fmt.Sprintf("%30s: ", name))
if s.staged.Direct {
b.WriteString("DIRECT | ")
} else {
b.WriteString("RELAYED | ")
}
if s.staged.Up {
b.WriteString("UP | ")
} else {
b.WriteString("DOWN | ")
}
log.Printf(b.String()+format, args...)
}
// ----------------------------------------------------------------------------
func (s *State) SendTo(pkt Marshaller, addr netip.AddrPort) {
if !addr.IsValid() {
return
}
route := s.staged
route.Direct = true
route.DirectAddr = addr
s.Send(route, pkt)
}
func (s *State) Send(peer RemotePeer, pkt Marshaller) {
if err := s.limiter.Limit(); err != nil {
s.logf("Rate limited.")
return
}
s.sendControlPacket(peer, pkt)
}
// ----------------------------------------------------------------------------
type StateDisconnected struct{ *State }
func EnterStateDisconnected(s *State) PeerState {
s.logf("==> Disconnected")
s.peer = nil
s.staged.Up = false
s.staged.Relay = false
s.staged.Direct = false
s.staged.DirectAddr = netip.AddrPort{}
s.staged.PubSignKey = nil
s.staged.ControlCipher = nil
s.staged.DataCipher = nil
s.publish(s.staged)
return &StateDisconnected{State: s}
}
func (s *StateDisconnected) OnSyn(controlMsg[PacketSyn]) PeerState { return nil }
func (s *StateDisconnected) OnAck(controlMsg[PacketAck]) {}
func (s *StateDisconnected) OnProbe(controlMsg[PacketProbe]) PeerState { return nil }
func (s *StateDisconnected) OnLocalDiscovery(controlMsg[PacketLocalDiscovery]) {}
func (s *StateDisconnected) OnPingTimer() PeerState { return nil }
// ----------------------------------------------------------------------------
type StateServer struct {
*StateDisconnected
lastSeen time.Time
synTraceID uint64
}
func EnterStateServer(s *State) PeerState {
s.logf("==> Server")
return &StateServer{StateDisconnected: &StateDisconnected{State: s}}
}
func (s *StateServer) OnSyn(msg controlMsg[PacketSyn]) PeerState {
s.lastSeen = time.Now()
p := msg.Packet
// Before we can respond to this packet, we need to make sure the
// route is setup properly.
//
// The client will update the syn's TraceID whenever there's a change.
// The server will follow the client's request.
if p.TraceID != s.synTraceID || !s.staged.Up {
s.synTraceID = p.TraceID
s.staged.Up = true
s.staged.Direct = p.Direct
s.staged.DataCipher = newDataCipherFromKey(p.SharedKey)
s.staged.DirectAddr = msg.SrcAddr
s.publish(s.staged)
s.logf("Got SYN.")
}
// Always respond.
ack := PacketAck{
TraceID: p.TraceID,
ToAddr: s.staged.DirectAddr,
PossibleAddrs: s.pubAddrs.Get(),
}
s.Send(s.staged, ack)
if p.Direct {
return nil
}
for _, addr := range msg.Packet.PossibleAddrs {
if !addr.IsValid() {
break
}
s.SendTo(PacketProbe{TraceID: newTraceID()}, addr)
}
return nil
}
func (s *StateServer) OnProbe(msg controlMsg[PacketProbe]) PeerState {
if msg.SrcAddr.IsValid() {
s.SendTo(PacketProbe{TraceID: msg.Packet.TraceID}, msg.SrcAddr)
}
return nil
}
func (s *StateServer) OnPingTimer() PeerState {
if time.Since(s.lastSeen) > timeoutInterval && s.staged.Up {
s.staged.Up = false
s.publish(s.staged)
s.logf("Timeout.")
}
return nil
}
// ----------------------------------------------------------------------------
type StateClientDirect struct {
*StateDisconnected
lastSeen time.Time
syn PacketSyn
}
func EnterStateClientDirect(s *State) PeerState {
s.logf("==> ClientDirect")
return NewStateClientDirect(s)
}
func NewStateClientDirect(s *State) *StateClientDirect {
state := &StateClientDirect{
StateDisconnected: &StateDisconnected{s},
lastSeen: time.Now(), // Avoid immediate timeout.
}
state.syn = PacketSyn{
TraceID: newTraceID(),
SharedKey: s.staged.DataCipher.Key(),
Direct: s.staged.Direct,
PossibleAddrs: s.pubAddrs.Get(),
}
state.Send(s.staged, state.syn)
return state
}
func (s *StateClientDirect) OnAck(msg controlMsg[PacketAck]) {
if msg.Packet.TraceID != s.syn.TraceID {
return
}
s.lastSeen = time.Now()
if !s.staged.Up {
s.staged.Up = true
s.publish(s.staged)
s.logf("Got ACK.")
}
s.pubAddrs.Store(msg.Packet.ToAddr)
}
func (s *StateClientDirect) OnPingTimer() PeerState {
if time.Since(s.lastSeen) > timeoutInterval {
if s.staged.Up {
s.staged.Up = false
s.publish(s.staged)
s.logf("Timeout.")
}
return s.OnPeerUpdate(s.peer)
}
s.Send(s.staged, s.syn)
return nil
}
// ----------------------------------------------------------------------------
type StateClientRelayed struct {
*StateClientDirect
ack PacketAck
probes map[uint64]netip.AddrPort
localDiscoveryAddr netip.AddrPort
}
func EnterStateClientRelayed(s *State) PeerState {
s.logf("==> ClientRelayed")
return &StateClientRelayed{
StateClientDirect: NewStateClientDirect(s),
probes: map[uint64]netip.AddrPort{},
}
}
func (s *StateClientRelayed) OnAck(msg controlMsg[PacketAck]) {
s.ack = msg.Packet
s.StateClientDirect.OnAck(msg)
}
func (s *StateClientRelayed) OnProbe(msg controlMsg[PacketProbe]) PeerState {
addr, ok := s.probes[msg.Packet.TraceID]
if !ok {
return nil
}
s.staged.DirectAddr = addr
s.staged.Direct = true
s.publish(s.staged)
return EnterStateClientDirect(s.StateClientDirect.State)
}
func (s *StateClientRelayed) OnLocalDiscovery(msg controlMsg[PacketLocalDiscovery]) {
// The source port will be the multicast port, so we'll have to
// construct the correct address using the peer's listed port.
s.localDiscoveryAddr = netip.AddrPortFrom(msg.SrcAddr.Addr(), s.peer.Port)
}
func (s *StateClientRelayed) OnPingTimer() PeerState {
if nextState := s.StateClientDirect.OnPingTimer(); nextState != nil {
return nextState
}
clear(s.probes)
for _, addr := range s.ack.PossibleAddrs {
if !addr.IsValid() {
break
}
s.sendProbeTo(addr)
}
if s.localDiscoveryAddr.IsValid() {
s.sendProbeTo(s.localDiscoveryAddr)
s.localDiscoveryAddr = netip.AddrPort{}
}
return nil
}
func (s *StateClientRelayed) sendProbeTo(addr netip.AddrPort) {
probe := PacketProbe{TraceID: newTraceID()}
s.probes[probe.TraceID] = addr
s.SendTo(probe, addr)
}

509
peer/peerstates_test.go Normal file
View File

@ -0,0 +1,509 @@
package peer
import (
"net/netip"
"testing"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
// ----------------------------------------------------------------------------
type PeerStateControlMsg struct {
Peer RemotePeer
Packet any
}
type PeerStateTestHarness struct {
State PeerState
Published RemotePeer
Sent []PeerStateControlMsg
}
func NewPeerStateTestHarness() *PeerStateTestHarness {
h := &PeerStateTestHarness{}
keys := generateKeys()
state := &State{
publish: func(rp RemotePeer) {
h.Published = rp
},
sendControlPacket: func(rp RemotePeer, pkt Marshaller) {
h.Sent = append(h.Sent, PeerStateControlMsg{rp, pkt})
},
localIP: 2,
remoteIP: 3,
privKey: keys.PrivKey,
pubAddrs: newPubAddrStore(netip.AddrPort{}),
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
h.State = EnterStateDisconnected(state)
return h
}
func (h *PeerStateTestHarness) PeerUpdate(p *m.Peer) {
if s := h.State.OnPeerUpdate(p); s != nil {
h.State = s
}
}
func (h *PeerStateTestHarness) OnSyn(msg controlMsg[PacketSyn]) {
if s := h.State.OnSyn(msg); s != nil {
h.State = s
}
}
func (h *PeerStateTestHarness) OnProbe(msg controlMsg[PacketProbe]) {
if s := h.State.OnProbe(msg); s != nil {
h.State = s
}
}
func (h *PeerStateTestHarness) OnPingTimer() {
if s := h.State.OnPingTimer(); s != nil {
h.State = s
}
}
func (h *PeerStateTestHarness) ConfigServer_Public(t *testing.T) *StateServer {
keys := generateKeys()
state := h.State.(*StateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 1, 1, 3},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*StateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigServer_Relayed(t *testing.T) *StateServer {
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*StateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientDirect(t *testing.T) *StateClientDirect {
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 2, 3, 4},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*StateClientDirect](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientRelayed(t *testing.T) *StateClientRelayed {
keys := generateKeys()
state := h.State.(*StateDisconnected)
state.remoteIP = 1
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*StateClientRelayed](t, h.State)
}
// ----------------------------------------------------------------------------
func TestPeerState_OnPeerUpdate_nilPeer(t *testing.T) {
h := NewPeerStateTestHarness()
h.PeerUpdate(nil)
assertType[*StateDisconnected](t, h.State)
}
func TestPeerState_OnPeerUpdate_publicLocalIsServer(t *testing.T) {
keys := generateKeys()
h := NewPeerStateTestHarness()
state := h.State.(*StateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
assertType[*StateServer](t, h.State)
}
func TestPeerState_OnPeerUpdate_serverDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
}
func TestPeerState_OnPeerUpdate_serverRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
}
func TestPeerState_OnPeerUpdate_clientDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
}
func TestPeerState_OnPeerUpdate_clientRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
}
func TestStateServer_directSyn(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[PacketSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: PacketSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State.OnSyn(synMsg)
assertEqual(t, len(h.Sent), 1)
ack := assertType[PacketAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0].IsValid(), false)
assertEqual(t, h.Published.Up, true)
}
func TestStateServer_relayedSyn(t *testing.T) {
h := NewPeerStateTestHarness()
state := h.ConfigServer_Relayed(t)
state.pubAddrs.Store(addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[PacketSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: PacketSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: false,
},
}
synMsg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 3, 300)
synMsg.Packet.PossibleAddrs[1] = addrPort4(2, 2, 2, 3, 300)
h.State.OnSyn(synMsg)
assertEqual(t, len(h.Sent), 3)
ack := assertType[PacketAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0], addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, ack.PossibleAddrs[1].IsValid(), false)
assertEqual(t, h.Published.Up, true)
assertType[PacketProbe](t, h.Sent[1].Packet)
assertType[PacketProbe](t, h.Sent[2].Packet)
assertEqual(t, h.Sent[1].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 300))
}
func TestStateServer_onProbe(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
probeMsg := controlMsg[PacketProbe]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: PacketProbe{TraceID: newTraceID()},
}
h.State.OnProbe(probeMsg)
assertEqual(t, len(h.Sent), 1)
probe := assertType[PacketProbe](t, h.Sent[0].Packet)
assertEqual(t, probe.TraceID, probeMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
}
func TestStateServer_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
synMsg := controlMsg[PacketSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: PacketSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State.OnSyn(synMsg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Published.Up, true)
// Ping shouldn't timeout.
h.OnPingTimer()
assertEqual(t, h.Published.Up, true)
// Advance the time, then ping.
state := assertType[*StateServer](t, h.State)
state.lastSeen = time.Now().Add(-timeoutInterval - time.Second)
h.OnPingTimer()
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{
Packet: PacketAck{TraceID: syn.TraceID},
}
h.State.OnAck(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientDirect_OnAck_incorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{
Packet: PacketAck{TraceID: syn.TraceID + 1},
}
h.State.OnAck(ack)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
assertType[PacketSyn](t, h.Sent[0].Packet)
h.OnPingTimer()
// On ping timer, another syn should be sent. Additionally, we should remain
// in the same state.
assertEqual(t, len(h.Sent), 2)
assertType[PacketSyn](t, h.Sent[1].Packet)
assertType[*StateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{
Packet: PacketAck{TraceID: syn.TraceID},
}
h.State.OnAck(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*StateClientDirect](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[PacketSyn](t, h.Sent[1].Packet)
assertType[*StateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{
Packet: PacketAck{TraceID: syn.TraceID},
}
h.State.OnAck(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientRelayed_OnPingTimer_noAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
// If we haven't had an ack yet, we won't have addresses to probe. Therefore
// we'll have just one more syn packet sent.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 2)
}
func TestStateClientRelayed_OnPingTimer_withAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{Packet: PacketAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State.OnAck(ack)
// Add a local discovery address. Note that the port will be configured port
// and no the one provided here.
h.State.OnLocalDiscovery(controlMsg[PacketLocalDiscovery]{
SrcIP: 3,
SrcAddr: addrPort4(2, 2, 2, 3, 300),
})
// We should see one SYN and three probe packets.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 5)
assertType[PacketSyn](t, h.Sent[1].Packet)
assertType[PacketProbe](t, h.Sent[2].Packet)
assertType[PacketProbe](t, h.Sent[3].Packet)
assertType[PacketProbe](t, h.Sent[4].Packet)
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(1, 1, 1, 1, 300))
assertEqual(t, h.Sent[3].Peer.DirectAddr, addrPort4(1, 1, 1, 2, 300))
assertEqual(t, h.Sent[4].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 456))
}
func TestStateClientRelayed_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{
Packet: PacketAck{TraceID: syn.TraceID},
}
h.State.OnAck(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*StateClientRelayed](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[PacketSyn](t, h.Sent[1].Packet)
assertType[*StateClientRelayed](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnProbe_unknownAddr(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.OnProbe(controlMsg[PacketProbe]{
Packet: PacketProbe{TraceID: newTraceID()},
})
assertType[*StateClientRelayed](t, h.State)
}
func TestStateClientRelayed_OnProbe_upgradeDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
syn := assertType[PacketSyn](t, h.Sent[0].Packet)
ack := controlMsg[PacketAck]{Packet: PacketAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State.OnAck(ack)
h.OnPingTimer()
probe := assertType[PacketProbe](t, h.Sent[2].Packet)
h.OnProbe(controlMsg[PacketProbe]{Packet: probe})
assertType[*StateClientDirect](t, h.State)
}

75
peer/pubaddrs.go Normal file
View File

@ -0,0 +1,75 @@
package peer
import (
"log"
"net/netip"
"runtime/debug"
"sort"
"time"
)
type pubAddrStore struct {
localPub bool
localAddr netip.AddrPort
lastSeen map[netip.AddrPort]time.Time
addrList []netip.AddrPort
}
func newPubAddrStore(localAddr netip.AddrPort) *pubAddrStore {
return &pubAddrStore{
localPub: localAddr.IsValid(),
localAddr: localAddr,
lastSeen: map[netip.AddrPort]time.Time{},
addrList: make([]netip.AddrPort, 0, 32),
}
}
func (store *pubAddrStore) Store(add netip.AddrPort) {
if store.localPub {
log.Printf("OOPS: Local pub but storage attempt: %s", debug.Stack())
return
}
if !add.IsValid() {
return
}
if _, exists := store.lastSeen[add]; !exists {
store.addrList = append(store.addrList, add)
}
store.lastSeen[add] = time.Now()
store.sort()
}
func (store *pubAddrStore) Get() (addrs [8]netip.AddrPort) {
if store.localPub {
addrs[0] = store.localAddr
return
}
copy(addrs[:], store.addrList)
return
}
func (store *pubAddrStore) Clean() {
if store.localPub {
return
}
for ip, lastSeen := range store.lastSeen {
if time.Since(lastSeen) > timeoutInterval {
delete(store.lastSeen, ip)
}
}
store.addrList = store.addrList[:0]
for ip := range store.lastSeen {
store.addrList = append(store.addrList, ip)
}
store.sort()
}
func (store *pubAddrStore) sort() {
sort.Slice(store.addrList, func(i, j int) bool {
return store.lastSeen[store.addrList[j]].Before(store.lastSeen[store.addrList[i]])
})
}

29
peer/pubaddrs_test.go Normal file
View File

@ -0,0 +1,29 @@
package peer
import (
"net/netip"
"testing"
"time"
)
func TestPubAddrStore(t *testing.T) {
s := newPubAddrStore(netip.AddrPort{})
l := []netip.AddrPort{
netip.AddrPortFrom(netip.AddrFrom4([4]byte{0, 1, 2, 3}), 20),
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 2, 3}), 21),
netip.AddrPortFrom(netip.AddrFrom4([4]byte{2, 1, 2, 3}), 22),
}
for i := range l {
s.Store(l[i])
time.Sleep(time.Millisecond)
}
s.Clean()
l2 := s.Get()
if l2[0] != l[2] || l2[1] != l[1] || l2[2] != l[0] {
t.Fatal(l, l2)
}
}

137
peer/routingtable.go Normal file
View File

@ -0,0 +1,137 @@
package peer
import (
"net/netip"
"sync/atomic"
"time"
)
// TODO: Remove
func NewRemotePeer(ip byte) *RemotePeer {
counter := uint64(time.Now().Unix()<<30 + 1)
return &RemotePeer{
IP: ip,
counter: &counter,
dupCheck: newDupCheck(0),
}
}
// ----------------------------------------------------------------------------
type RemotePeer struct {
localIP byte
IP byte // VPN IP of peer (last byte).
Up bool // True if data can be sent on the peer.
Relay bool // True if the peer is a relay.
Direct bool // True if this is a direct connection.
DirectAddr netip.AddrPort // Remote address if directly connected.
PubSignKey []byte
ControlCipher *controlCipher
DataCipher *dataCipher
counter *uint64 // For sending to. Atomic access only.
dupCheck *dupCheck // For receiving from. Not safe for concurrent use.
}
func (p RemotePeer) EncryptDataPacket(destIP byte, data, out []byte) []byte {
h := header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: destIP,
}
return p.DataCipher.Encrypt(h, data, out)
}
// Decrypts and de-dups incoming data packets.
func (p RemotePeer) DecryptDataPacket(h header, enc, out []byte) ([]byte, error) {
dec, ok := p.DataCipher.Decrypt(enc, out)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
return dec, nil
}
// Peer must have a ControlCipher.
func (p RemotePeer) EncryptControlPacket(pkt Marshaller, tmp, out []byte) []byte {
h := header{
StreamID: controlStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: p.IP,
}
tmp = pkt.Marshal(tmp)
return p.ControlCipher.Encrypt(h, tmp, out)
}
// Returns a controlMsg[PacketType]. Peer must have a non-nil ControlCipher.
//
// This function also drops packets with duplicate sequence numbers.
func (p RemotePeer) DecryptControlPacket(fromAddr netip.AddrPort, h header, enc, tmp []byte) (any, error) {
out, ok := p.ControlCipher.Decrypt(enc, tmp)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
msg, err := parseControlMsg(h.SourceIP, fromAddr, out)
if err != nil {
return nil, err
}
return msg, nil
}
// ----------------------------------------------------------------------------
type RoutingTable struct {
// The LocalIP is the configured IP address of the local peer on the VPN.
//
// This value is constant.
LocalIP byte
// The LocalAddr is the configured local public address of the peer on the
// internet. If LocalAddr.IsValid(), then the local peer has a public
// address.
//
// This value is constant.
LocalAddr netip.AddrPort
// The remote peer configurations. These are updated by
Peers [256]RemotePeer
// The current relay's VPN IP address, or zero if no relay is available.
RelayIP byte
}
func NewRoutingTable(localIP byte, localAddr netip.AddrPort) RoutingTable {
rt := RoutingTable{
LocalIP: localIP,
LocalAddr: localAddr,
}
for i := range rt.Peers {
counter := uint64(time.Now().Unix()<<30 + 1)
rt.Peers[i] = RemotePeer{
localIP: localIP,
IP: byte(i),
counter: &counter,
dupCheck: newDupCheck(0),
}
}
return rt
}
func (rt *RoutingTable) GetRelay() (RemotePeer, bool) {
relay := rt.Peers[rt.RelayIP]
return relay, relay.Up && relay.Direct
}

169
peer/routingtable_test.go Normal file
View File

@ -0,0 +1,169 @@
package peer
import (
"bytes"
"reflect"
"testing"
)
func TestRemotePeer_DecryptDataPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
dec, err := peer1.DecryptDataPacket(h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(orig, dec) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptDataPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
for range 2048 {
_, err := peer1.DecryptDataPacket(h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(enc)
}
}
}
func TestRemotePeer_DecryptDataPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := PacketProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
dec, ok := ctrlMsg.(controlMsg[PacketProbe])
if !ok {
t.Fatal(ctrlMsg)
}
if dec.SrcIP != 1 || dec.SrcAddr != p1.RT.Load().LocalAddr {
t.Fatal(dec)
}
if !reflect.DeepEqual(dec.Packet, orig) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptControlPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := PacketProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
for range 2048 {
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(ctrlMsg)
}
}
}
func TestRemotePeer_DecryptControlPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := PacketProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket_unknownPacketType(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := UnknownControlPacket{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}

View File

@ -1,29 +0,0 @@
package peer
import (
"net/netip"
"time"
)
type RemotePeer struct {
IP byte // VPN IP of peer (last byte).
Up bool // True if data can be sent on the peer.
Relay bool // True if the peer is a relay.
Direct bool // True if this is a direct connection.
DirectAddr netip.AddrPort // Remote address if directly connected.
PubSignKey []byte
ControlCipher *controlCipher
DataCipher *dataCipher
Counter *uint64 // For sending to. Atomic access only.
DupCheck *dupCheck // For receiving from. Not safe for concurrent use.
}
func NewRemotePeer(ip byte) *RemotePeer {
counter := uint64(time.Now().Unix()<<30 + 1)
return &RemotePeer{
IP: ip,
Counter: &counter,
DupCheck: newDupCheck(0),
}
}

103
peer/supervisor.go Normal file
View File

@ -0,0 +1,103 @@
package peer
import (
"log"
"sync/atomic"
"time"
"git.crumpington.com/lib/go/ratelimiter"
)
// ----------------------------------------------------------------------------
type Supervisor struct {
messages chan any // Incoming control messages.
peers [256]PeerState
pubAddrs *pubAddrStore
rt *atomic.Pointer[RoutingTable]
staged RoutingTable
}
func NewSupervisor(
sendControl func(RemotePeer, Marshaller),
privKey []byte,
rt *atomic.Pointer[RoutingTable],
) *Supervisor {
s := &Supervisor{
messages: make(chan any, 1024),
pubAddrs: newPubAddrStore(rt.Load().LocalAddr),
rt: rt,
}
routes := rt.Load()
for i := range s.peers {
state := &State{
publish: s.Publish,
sendControlPacket: sendControl,
localIP: routes.LocalIP,
remoteIP: byte(i),
privKey: privKey,
localAddr: routes.LocalAddr,
pubAddrs: s.pubAddrs,
staged: routes.Peers[i],
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
s.peers[i] = state.OnPeerUpdate(nil)
}
return s
}
func (s *Supervisor) HandleControlMsg(msg any) {
select {
case s.messages <- msg:
default:
}
}
func (s *Supervisor) Run() {
for raw := range s.messages {
switch msg := raw.(type) {
case peerUpdateMsg:
s.peers[msg.PeerIP] = s.peers[msg.PeerIP].OnPeerUpdate(msg.Peer)
case controlMsg[PacketSyn]:
if newState := s.peers[msg.SrcIP].OnSyn(msg); newState != nil {
s.peers[msg.SrcIP] = newState
}
case controlMsg[PacketAck]:
s.peers[msg.SrcIP].OnAck(msg)
case controlMsg[PacketProbe]:
if newState := s.peers[msg.SrcIP].OnProbe(msg); newState != nil {
s.peers[msg.SrcIP] = newState
}
case controlMsg[PacketLocalDiscovery]:
s.peers[msg.SrcIP].OnLocalDiscovery(msg)
case pingTimerMsg:
s.pubAddrs.Clean()
for i := range s.peers {
if newState := s.peers[i].OnPingTimer(); newState != nil {
s.peers[i] = newState
}
}
default:
log.Printf("WARNING: unknown message type: %+v", msg)
}
}
}
func (s *Supervisor) Publish(rp RemotePeer) {
s.staged.Peers[rp.IP] = rp
rt := s.staged // Copy.
s.rt.Store(&rt)
}

26
peer/util_test.go Normal file
View File

@ -0,0 +1,26 @@
package peer
import (
"net/netip"
"testing"
)
func addrPort4(a, b, c, d byte, port uint16) netip.AddrPort {
return netip.AddrPortFrom(netip.AddrFrom4([4]byte{a, b, c, d}), port)
}
func assertType[T any](t *testing.T, obj any) T {
t.Helper()
x, ok := obj.(T)
if !ok {
t.Fatal("invalid type", obj)
}
return x
}
func assertEqual[T comparable](t *testing.T, a, b T) {
t.Helper()
if a != b {
t.Fatal(a, " != ", b)
}
}