refactor-for-testability #3

Merged
johnnylee merged 26 commits from refactor-for-testability into main 2025-03-01 20:02:27 +00:00
68 changed files with 3908 additions and 1547 deletions

View File

@ -1,9 +1,5 @@
# vppn: Virtual Potentially Private Network
## TODO
* Add `-force-init` argument to `node` main?
## Hub Server Configuration
```
@ -33,7 +29,6 @@ WorkingDirectory=/home/user/
ExecStart=/home/user/hub -listen <addr>:https -root-dir=/home/user
Restart=always
RestartSec=8
TimeoutStopSec=24
[Install]
WantedBy=default.target
@ -70,7 +65,6 @@ WorkingDirectory=/home/user/
ExecStart=/home/user/vppn -name vppn -hub-address https://my.hub -api-key 1234567890
Restart=always
RestartSec=8
TimeoutStopSec=24
[Install]
WantedBy=default.target

View File

@ -2,10 +2,10 @@ package main
import (
"log"
"vppn/node"
"vppn/peer"
)
func main() {
log.SetFlags(0)
node.Main()
peer.Main()
}

View File

@ -1,71 +0,0 @@
package node
import (
"log"
"net/netip"
"runtime/debug"
"sort"
"time"
)
type pubAddrStore struct {
lastSeen map[netip.AddrPort]time.Time
addrList []netip.AddrPort
}
func newPubAddrStore() *pubAddrStore {
return &pubAddrStore{
lastSeen: map[netip.AddrPort]time.Time{},
addrList: make([]netip.AddrPort, 0, 32),
}
}
func (store *pubAddrStore) Store(add netip.AddrPort) {
if localPub {
log.Printf("OOPS: Local pub but storage attempt: %s", debug.Stack())
return
}
if !add.IsValid() {
return
}
if _, exists := store.lastSeen[add]; !exists {
store.addrList = append(store.addrList, add)
}
store.lastSeen[add] = time.Now()
store.sort()
}
func (store *pubAddrStore) Get() (addrs [8]netip.AddrPort) {
if localPub {
addrs[0] = localAddr
return
}
copy(addrs[:], store.addrList)
return
}
func (store *pubAddrStore) Clean() {
if localPub {
return
}
for ip, lastSeen := range store.lastSeen {
if time.Since(lastSeen) > timeoutInterval {
delete(store.lastSeen, ip)
}
}
store.addrList = store.addrList[:0]
for ip := range store.lastSeen {
store.addrList = append(store.addrList, ip)
}
store.sort()
}
func (store *pubAddrStore) sort() {
sort.Slice(store.addrList, func(i, j int) bool {
return store.lastSeen[store.addrList[j]].Before(store.lastSeen[store.addrList[i]])
})
}

View File

@ -1,11 +0,0 @@
package node
import "vppn/m"
type localConfig struct {
m.PeerConfig
PubKey []byte
PrivKey []byte
PubSignKey []byte
PrivSignKey []byte
}

View File

@ -1,50 +0,0 @@
package node
import (
"io"
"log"
"net"
"net/netip"
"sync"
)
// ----------------------------------------------------------------------------
type connWriter struct {
lock sync.Mutex
conn *net.UDPConn
}
func newConnWriter(conn *net.UDPConn) *connWriter {
return &connWriter{conn: conn}
}
func (w *connWriter) WriteTo(packet []byte, addr netip.AddrPort) {
// Even though a conn is safe for concurrent use, it turns out that a mutex
// in Go is more fair when there's contention. Without this lock, control
// packets may fail to be sent in a timely manner causing timeouts.
w.lock.Lock()
if _, err := w.conn.WriteToUDPAddrPort(packet, addr); err != nil {
log.Printf("Failed to write to UDP port: %v", err)
}
w.lock.Unlock()
}
// ----------------------------------------------------------------------------
type ifWriter struct {
lock sync.Mutex
iface io.ReadWriteCloser
}
func newIFWriter(iface io.ReadWriteCloser) *ifWriter {
return &ifWriter{iface: iface}
}
func (w *ifWriter) Write(packet []byte) {
w.lock.Lock()
if _, err := w.iface.Write(packet); err != nil {
log.Fatalf("Failed to write to interface: %v", err)
}
w.lock.Unlock()
}

View File

@ -1,65 +0,0 @@
package node
import (
"sync/atomic"
)
func getRelayRoute() *peerRoute {
if ip := relayIP.Load(); ip != nil {
return routingTable[*ip].Load()
}
return nil
}
func _sendControlPacket(pkt interface{ Marshal([]byte) []byte }, route peerRoute, buf1, buf2 []byte) {
buf := pkt.Marshal(buf2)
h := header{
StreamID: controlStreamID,
Counter: atomic.AddUint64(&sendCounters[route.IP], 1),
SourceIP: localIP,
DestIP: route.IP,
}
buf = route.ControlCipher.Encrypt(h, buf, buf1)
if route.Direct {
_conn.WriteTo(buf, route.RemoteAddr)
return
}
_relayPacket(route.IP, buf, buf2)
}
func _sendDataPacket(route *peerRoute, pkt, buf1, buf2 []byte) {
h := header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(&sendCounters[route.IP], 1),
SourceIP: localIP,
DestIP: route.IP,
}
enc := route.DataCipher.Encrypt(h, pkt, buf1)
if route.Direct {
_conn.WriteTo(enc, route.RemoteAddr)
return
}
_relayPacket(route.IP, enc, buf2)
}
func _relayPacket(destIP byte, data, buf []byte) {
relayRoute := getRelayRoute()
if relayRoute == nil || !relayRoute.Up || !relayRoute.Relay {
return
}
h := header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(&sendCounters[relayRoute.IP], 1),
SourceIP: localIP,
DestIP: destIP,
}
enc := relayRoute.DataCipher.Encrypt(h, data, buf)
_conn.WriteTo(enc, relayRoute.RemoteAddr)
}

View File

@ -1,86 +0,0 @@
package node
import (
"net"
"net/netip"
"net/url"
"sync/atomic"
"time"
)
const (
bufferSize = 1536
if_mtu = 1200
if_queue_len = 2048
controlCipherOverhead = 16
dataCipherOverhead = 16
signOverhead = 64
)
var (
multicastIP = netip.AddrFrom4([4]byte{224, 0, 0, 157})
multicastAddr = net.UDPAddrFromAddrPort(netip.AddrPortFrom(multicastIP, 4560))
)
type peerRoute struct {
IP byte
Up bool // True if data can be sent on the route.
Relay bool // True if the peer is a relay.
Direct bool // True if this is a direct connection.
PubSignKey []byte
ControlCipher *controlCipher
DataCipher *dataCipher
RemoteAddr netip.AddrPort // Remote address if directly connected.
}
var (
hubURL *url.URL
apiKey string
// Configuration for this peer.
netName string
localIP byte
localPub bool
localAddr netip.AddrPort
privKey []byte
privSignKey []byte
// Shared interface for writing.
_iface *ifWriter
// Shared connection for writing.
_conn *connWriter
// Counters for sending to each peer.
sendCounters [256]uint64 = func() (out [256]uint64) {
for i := range out {
out[i] = uint64(time.Now().Unix()<<30 + 1)
}
return
}()
// Duplicate checkers for incoming packets.
dupChecks [256]*dupCheck = func() (out [256]*dupCheck) {
for i := range out {
out[i] = newDupCheck(0)
}
return
}()
// Messages for the supervisor.
messages = make(chan any, 1024)
// Global routing table.
routingTable [256]*atomic.Pointer[peerRoute] = func() (out [256]*atomic.Pointer[peerRoute]) {
for i := range out {
out[i] = &atomic.Pointer[peerRoute]{}
out[i].Store(&peerRoute{})
}
return
}()
// Managed by the relayManager.
relayIP = &atomic.Pointer[byte]{}
publicAddrs = newPubAddrStore()
)

View File

@ -1,92 +0,0 @@
package node
import (
"encoding/json"
"io"
"log"
"net/http"
"time"
"vppn/m"
)
type hubPoller struct {
client *http.Client
req *http.Request
versions [256]int64
}
func newHubPoller() *hubPoller {
u := *hubURL
u.Path = "/peer/fetch-state/"
client := &http.Client{Timeout: 8 * time.Second}
req := &http.Request{
Method: http.MethodGet,
URL: &u,
Header: http.Header{},
}
req.SetBasicAuth("", apiKey)
return &hubPoller{
client: client,
req: req,
}
}
func (hp *hubPoller) Run() {
defer panicHandler()
state, err := loadNetworkState(netName)
if err != nil {
log.Printf("Failed to load network state: %v", err)
log.Printf("Polling hub...")
hp.pollHub()
} else {
hp.applyNetworkState(state)
}
for range time.Tick(64 * time.Second) {
hp.pollHub()
}
}
func (hp *hubPoller) pollHub() {
var state m.NetworkState
resp, err := hp.client.Do(hp.req)
if err != nil {
log.Printf("Failed to fetch peer state: %v", err)
return
}
body, err := io.ReadAll(resp.Body)
_ = resp.Body.Close()
if err != nil {
log.Printf("Failed to read body from hub: %v", err)
return
}
if err := json.Unmarshal(body, &state); err != nil {
log.Printf("Failed to unmarshal response from hub: %v\n%s", err, body)
return
}
hp.applyNetworkState(state)
if err := storeNetworkState(netName, state); err != nil {
log.Printf("Failed to store network state: %v", err)
}
}
func (hp *hubPoller) applyNetworkState(state m.NetworkState) {
for i, peer := range state.Peers {
if i != int(localIP) {
if peer == nil || peer.Version != hp.versions[i] {
messages <- peerUpdateMsg{PeerIP: byte(i), Peer: state.Peers[i]}
if peer != nil {
hp.versions[i] = peer.Version
}
}
}
}
}

View File

@ -1,97 +0,0 @@
package node
import (
"log"
"net"
"time"
"golang.org/x/crypto/nacl/sign"
)
func localDiscovery() {
conn, err := net.ListenMulticastUDP("udp", nil, multicastAddr)
if err != nil {
log.Printf("Failed to bind to multicast address: %v", err)
return
}
go sendLocalDiscovery(conn)
go recvLocalDiscovery(conn)
}
func sendLocalDiscovery(conn *net.UDPConn) {
var (
buf1 = make([]byte, bufferSize)
buf2 = make([]byte, bufferSize)
)
for range time.Tick(16 * time.Second) {
signed := buildLocalDiscoveryPacket(buf1, buf2)
if _, err := conn.WriteToUDP(signed, multicastAddr); err != nil {
log.Printf("Failed to write multicast UDP packet: %v", err)
}
}
}
func recvLocalDiscovery(conn *net.UDPConn) {
var (
raw = make([]byte, bufferSize)
buf = make([]byte, bufferSize)
)
for {
n, remoteAddr, err := conn.ReadFromUDPAddrPort(raw[:bufferSize])
if err != nil {
log.Fatalf("Failed to read from UDP port (multicast): %v", err)
}
raw = raw[:n]
h, ok := openLocalDiscoveryPacket(raw, buf)
if !ok {
log.Printf("Failed to open discovery packet?")
continue
}
msg := controlMsg[localDiscoveryPacket]{
SrcIP: h.SourceIP,
SrcAddr: remoteAddr,
Packet: localDiscoveryPacket{},
}
select {
case messages <- msg:
default:
log.Printf("Dropping local discovery message.")
}
}
}
func buildLocalDiscoveryPacket(buf1, buf2 []byte) []byte {
h := header{
StreamID: controlStreamID,
Counter: 0,
SourceIP: localIP,
DestIP: 255,
}
out := buf1[:headerSize]
h.Marshal(out)
return sign.Sign(buf2[:0], out, (*[64]byte)(privSignKey))
}
func openLocalDiscoveryPacket(raw, buf []byte) (h header, ok bool) {
if len(raw) != headerSize+signOverhead {
ok = false
return
}
h.Parse(raw[signOverhead:])
route := routingTable[h.SourceIP].Load()
if route == nil || route.PubSignKey == nil {
log.Printf("Missing signing key: %d", h.SourceIP)
ok = false
return
}
_, ok = sign.Open(buf[:0], raw, (*[32]byte)(route.PubSignKey))
return
}

View File

@ -1,35 +0,0 @@
package node
import (
"bytes"
"crypto/rand"
"testing"
"golang.org/x/crypto/nacl/sign"
)
func TestLocalDiscoveryPacketSigning(t *testing.T) {
localIP = 32
var (
buf1 = make([]byte, bufferSize)
buf2 = make([]byte, bufferSize)
pubSignKey, privSigKey, _ = sign.GenerateKey(rand.Reader)
)
privSignKey = privSigKey[:]
route := routingTable[localIP].Load()
route.IP = byte(localIP)
route.PubSignKey = pubSignKey[0:32]
routingTable[localIP].Store(route)
out := buildLocalDiscoveryPacket(buf1, buf2)
h, ok := openLocalDiscoveryPacket(bytes.Clone(out), buf1)
if !ok {
t.Fatal(h, ok)
}
if h.StreamID != controlStreamID || h.SourceIP != localIP || h.DestIP != 255 {
t.Fatal(h)
}
}

View File

@ -1,323 +0,0 @@
package node
import (
"bytes"
"crypto/rand"
"encoding/json"
"flag"
"fmt"
"io"
"log"
"net"
"net/http"
"net/netip"
"net/url"
"os"
"runtime/debug"
"time"
"vppn/m"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/sign"
)
func panicHandler() {
if r := recover(); r != nil {
log.Fatalf("\n %v\n\nstacktrace from panic: %s\n", r, string(debug.Stack()))
}
}
func Main() {
defer panicHandler()
var hubAddress string
flag.StringVar(&netName, "name", "", "[REQUIRED] The network name.")
flag.StringVar(&hubAddress, "hub-address", "", "[REQUIRED] The hub address.")
flag.StringVar(&apiKey, "api-key", "", "[REQUIRED] The node's API key.")
flag.Parse()
if netName == "" || hubAddress == "" || apiKey == "" {
flag.Usage()
os.Exit(1)
}
var err error
hubURL, err = url.Parse(hubAddress)
if err != nil {
log.Fatalf("Failed to parse hub address: %v", err)
}
main()
}
func initPeerWithHub() {
encPubKey, encPrivKey, err := box.GenerateKey(rand.Reader)
if err != nil {
log.Fatalf("Failed to generate encryption keys: %v", err)
}
signPubKey, signPrivKey, err := sign.GenerateKey(rand.Reader)
if err != nil {
log.Fatalf("Failed to generate signing keys: %v", err)
}
initURL := *hubURL
initURL.Path = "/peer/init/"
args := m.PeerInitArgs{
EncPubKey: encPubKey[:],
PubSignKey: signPubKey[:],
}
buf := &bytes.Buffer{}
if err := json.NewEncoder(buf).Encode(args); err != nil {
log.Fatalf("Failed to encode init args: %v", err)
}
req, err := http.NewRequest(http.MethodPost, initURL.String(), buf)
if err != nil {
log.Fatalf("Failed to construct request: %v", err)
}
req.SetBasicAuth("", apiKey)
resp, err := http.DefaultClient.Do(req)
if err != nil {
log.Fatalf("Failed to init with hub: %v", err)
}
defer resp.Body.Close()
data, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatalf("Failed to read response body: %v", err)
}
peerConfig := localConfig{}
if err := json.Unmarshal(data, &peerConfig.PeerConfig); err != nil {
log.Fatalf("Failed to parse configuration: %v\n%s", err, data)
}
peerConfig.PubKey = encPubKey[:]
peerConfig.PrivKey = encPrivKey[:]
peerConfig.PubSignKey = signPubKey[:]
peerConfig.PrivSignKey = signPrivKey[:]
if err := storePeerConfig(netName, peerConfig); err != nil {
log.Fatalf("Failed to store configuration: %v", err)
}
log.Print("Initialization successful.")
}
// ----------------------------------------------------------------------------
func main() {
config, err := loadPeerConfig(netName)
if err != nil {
log.Printf("Failed to load configuration: %v", err)
log.Printf("Initializing...")
initPeerWithHub()
config, err = loadPeerConfig(netName)
if err != nil {
log.Fatalf("Failed to load configuration: %v", err)
}
}
iface, err := openInterface(config.Network, config.PeerIP, netName)
if err != nil {
log.Fatalf("Failed to open interface: %v", err)
}
myAddr, err := net.ResolveUDPAddr("udp", fmt.Sprintf(":%d", config.Port))
if err != nil {
log.Fatalf("Failed to resolve UDP address: %v", err)
}
conn, err := net.ListenUDP("udp", myAddr)
if err != nil {
log.Fatalf("Failed to open UDP port: %v", err)
}
conn.SetReadBuffer(1024 * 1024 * 8)
conn.SetWriteBuffer(1024 * 1024 * 8)
// Intialize globals.
_iface = newIFWriter(iface)
_conn = newConnWriter(conn)
localIP = config.PeerIP
ip, ok := netip.AddrFromSlice(config.PublicIP)
if ok {
localPub = true
localAddr = netip.AddrPortFrom(ip, config.Port)
}
privKey = config.PrivKey
privSignKey = config.PrivSignKey
if !localPub {
go relayManager()
go localDiscovery()
}
go func() {
for range time.Tick(pingInterval) {
messages <- pingTimerMsg{}
}
}()
go startPeerSuper()
go newHubPoller().Run()
go readFromConn(conn)
readFromIFace(iface)
}
// ----------------------------------------------------------------------------
func readFromConn(conn *net.UDPConn) {
defer panicHandler()
var (
remoteAddr netip.AddrPort
n int
err error
buf = make([]byte, bufferSize)
decBuf = make([]byte, bufferSize)
data []byte
h header
)
for {
n, remoteAddr, err = conn.ReadFromUDPAddrPort(buf[:bufferSize])
if err != nil {
log.Fatalf("Failed to read from UDP port: %v", err)
}
remoteAddr = netip.AddrPortFrom(remoteAddr.Addr().Unmap(), remoteAddr.Port())
data = buf[:n]
if n < headerSize {
continue // Packet it soo short.
}
h.Parse(data)
switch h.StreamID {
case controlStreamID:
handleControlPacket(remoteAddr, h, data, decBuf)
case dataStreamID:
handleDataPacket(h, data, decBuf)
default:
log.Printf("Unknown stream ID: %d", h.StreamID)
}
}
}
func handleControlPacket(addr netip.AddrPort, h header, data, decBuf []byte) {
route := routingTable[h.SourceIP].Load()
if route.ControlCipher == nil {
//log.Printf("Not connected (control).")
return
}
if h.DestIP != localIP {
log.Printf("Incorrect destination IP on control packet: %#v", h)
return
}
out, ok := route.ControlCipher.Decrypt(data, decBuf)
if !ok {
log.Printf("Failed to decrypt control packet.")
return
}
if len(out) == 0 {
log.Printf("Empty control packet from: %d", h.SourceIP)
return
}
if dupChecks[h.SourceIP].IsDup(h.Counter) {
log.Printf("[%03d] Duplicate control packet: %d", h.SourceIP, h.Counter)
return
}
msg, err := parseControlMsg(h.SourceIP, addr, out)
if err != nil {
log.Printf("Failed to parse control packet: %v", err)
return
}
select {
case messages <- msg:
default:
log.Printf("Dropping control packet.")
}
}
func handleDataPacket(h header, data []byte, decBuf []byte) {
route := routingTable[h.SourceIP].Load()
if !route.Up {
log.Printf("Not connected (recv).")
return
}
dec, ok := route.DataCipher.Decrypt(data, decBuf)
if !ok {
log.Printf("Failed to decrypt data packet.")
return
}
if dupChecks[h.SourceIP].IsDup(h.Counter) {
log.Printf("[%03d] Duplicate data packet: %d", h.SourceIP, h.Counter)
return
}
if h.DestIP == localIP {
_iface.Write(dec)
return
}
destRoute := routingTable[h.DestIP].Load()
if !destRoute.Up {
log.Printf("Not connected (relay): %d", destRoute.IP)
return
}
_conn.WriteTo(dec, destRoute.RemoteAddr)
}
// ----------------------------------------------------------------------------
func readFromIFace(iface io.ReadWriteCloser) {
var (
packet = make([]byte, bufferSize)
buf1 = make([]byte, bufferSize)
buf2 = make([]byte, bufferSize)
remoteIP byte
err error
)
for {
packet, remoteIP, err = readNextPacket(iface, packet)
if err != nil {
log.Fatalf("Failed to read from interface: %v", err)
}
route := routingTable[remoteIP].Load()
if !route.Up {
log.Printf("Route not connected: %d", remoteIP)
continue
}
_sendDataPacket(route, packet, buf1, buf2)
}
}

View File

@ -1,129 +0,0 @@
package node
import (
"errors"
"net/netip"
)
var (
errMalformedPacket = errors.New("malformed packet")
errUnknownPacketType = errors.New("unknown packet type")
)
const (
packetTypeSyn = iota + 1
packetTypeSynAck
packetTypeAck
packetTypeProbe
packetTypeAddrDiscovery
)
// ----------------------------------------------------------------------------
type synPacket struct {
TraceID uint64 // TraceID to match response w/ request.
SharedKey [32]byte // Our shared key.
Direct bool
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p synPacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeSyn).
Uint64(p.TraceID).
SharedKey(p.SharedKey).
Bool(p.Direct).
AddrPort(p.PossibleAddrs[0]).
AddrPort(p.PossibleAddrs[1]).
AddrPort(p.PossibleAddrs[2]).
AddrPort(p.PossibleAddrs[3]).
AddrPort(p.PossibleAddrs[4]).
AddrPort(p.PossibleAddrs[5]).
AddrPort(p.PossibleAddrs[6]).
AddrPort(p.PossibleAddrs[7]).
Build()
}
func parseSynPacket(buf []byte) (p synPacket, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
SharedKey(&p.SharedKey).
Bool(&p.Direct).
AddrPort(&p.PossibleAddrs[0]).
AddrPort(&p.PossibleAddrs[1]).
AddrPort(&p.PossibleAddrs[2]).
AddrPort(&p.PossibleAddrs[3]).
AddrPort(&p.PossibleAddrs[4]).
AddrPort(&p.PossibleAddrs[5]).
AddrPort(&p.PossibleAddrs[6]).
AddrPort(&p.PossibleAddrs[7]).
Error()
return
}
// ----------------------------------------------------------------------------
type ackPacket struct {
TraceID uint64
ToAddr netip.AddrPort
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p ackPacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeAck).
Uint64(p.TraceID).
AddrPort(p.ToAddr).
AddrPort(p.PossibleAddrs[0]).
AddrPort(p.PossibleAddrs[1]).
AddrPort(p.PossibleAddrs[2]).
AddrPort(p.PossibleAddrs[3]).
AddrPort(p.PossibleAddrs[4]).
AddrPort(p.PossibleAddrs[5]).
AddrPort(p.PossibleAddrs[6]).
AddrPort(p.PossibleAddrs[7]).
Build()
}
func parseAckPacket(buf []byte) (p ackPacket, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
AddrPort(&p.ToAddr).
AddrPort(&p.PossibleAddrs[0]).
AddrPort(&p.PossibleAddrs[1]).
AddrPort(&p.PossibleAddrs[2]).
AddrPort(&p.PossibleAddrs[3]).
AddrPort(&p.PossibleAddrs[4]).
AddrPort(&p.PossibleAddrs[5]).
AddrPort(&p.PossibleAddrs[6]).
AddrPort(&p.PossibleAddrs[7]).
Error()
return
}
// ----------------------------------------------------------------------------
// A probeReqPacket is sent from a client to a server to determine if direct
// UDP communication can be used.
type probePacket struct {
TraceID uint64
}
func (p probePacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeProbe).
Uint64(p.TraceID).
Build()
}
func parseProbePacket(buf []byte) (p probePacket, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
Error()
return
}
// ----------------------------------------------------------------------------
type localDiscoveryPacket struct{}

View File

@ -1,41 +0,0 @@
package node
import (
"crypto/rand"
"net/netip"
"reflect"
"testing"
)
func TestPacketSyn(t *testing.T) {
in := synPacket{
TraceID: newTraceID(),
FromAddr: netip.AddrPortFrom(netip.AddrFrom4([4]byte{4, 5, 6, 7}), 22),
}
rand.Read(in.SharedKey[:])
out, err := parseSynPacket(in.Marshal(make([]byte, bufferSize)))
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(in, out) {
t.Fatal("\n", in, "\n", out)
}
}
func TestPacketSynAck(t *testing.T) {
in := ackPacket{
TraceID: newTraceID(),
FromAddr: netip.AddrPortFrom(netip.AddrFrom4([4]byte{4, 5, 6, 7}), 22),
}
out, err := parseAckPacket(in.Marshal(make([]byte, bufferSize)))
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(in, out) {
t.Fatal("\n", in, "\n", out)
}
}

View File

@ -1,40 +0,0 @@
package node
import (
"log"
"math/rand"
"time"
)
func relayManager() {
time.Sleep(2 * time.Second)
updateRelayRoute()
for range time.Tick(8 * time.Second) {
relay := getRelayRoute()
if relay == nil || !relay.Up || !relay.Relay {
updateRelayRoute()
}
}
}
func updateRelayRoute() {
possible := make([]*peerRoute, 0, 8)
for i := range routingTable {
route := routingTable[i].Load()
if !route.Up || !route.Relay {
continue
}
possible = append(possible, route)
}
if len(possible) == 0 {
log.Printf("No relay available.")
relayIP.Store(nil)
return
}
ip := possible[rand.Intn(len(possible))].IP
log.Printf("New relay IP: %d", ip)
relayIP.Store(&ip)
}

View File

@ -1,417 +0,0 @@
package node
import (
"fmt"
"log"
"net/netip"
"strings"
"sync/atomic"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
const (
pingInterval = 8 * time.Second
timeoutInterval = 30 * time.Second
)
// ----------------------------------------------------------------------------
func startPeerSuper() {
peers := [256]peerState{}
for i := range peers {
data := &peerStateData{
published: routingTable[i],
remoteIP: byte(i),
buf1: make([]byte, bufferSize),
buf2: make([]byte, bufferSize),
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
peers[i] = data.OnPeerUpdate(nil)
}
go runPeerSuper(peers)
}
func runPeerSuper(peers [256]peerState) {
for raw := range messages {
switch msg := raw.(type) {
case peerUpdateMsg:
peers[msg.PeerIP] = peers[msg.PeerIP].OnPeerUpdate(msg.Peer)
case controlMsg[synPacket]:
peers[msg.SrcIP].OnSyn(msg)
case controlMsg[ackPacket]:
peers[msg.SrcIP].OnAck(msg)
case controlMsg[probePacket]:
peers[msg.SrcIP].OnProbe(msg)
case controlMsg[localDiscoveryPacket]:
peers[msg.SrcIP].OnLocalDiscovery(msg)
case pingTimerMsg:
publicAddrs.Clean()
for i := range peers {
if newState := peers[i].OnPingTimer(); newState != nil {
peers[i] = newState
}
}
default:
log.Printf("WARNING: unknown message type: %+v", msg)
}
}
}
// ----------------------------------------------------------------------------
type peerState interface {
OnPeerUpdate(*m.Peer) peerState
OnSyn(controlMsg[synPacket])
OnAck(controlMsg[ackPacket])
OnProbe(controlMsg[probePacket])
OnLocalDiscovery(controlMsg[localDiscoveryPacket])
OnPingTimer() peerState
}
// ----------------------------------------------------------------------------
type peerStateData struct {
// The purpose of this state machine is to manage this published data.
published *atomic.Pointer[peerRoute]
staged peerRoute // Local copy of shared data. See publish().
// Immutable data.
remoteIP byte // Remote VPN IP.
// Mutable peer data.
peer *m.Peer
remotePub bool
// Buffers for sending control packets.
buf1 []byte
buf2 []byte
// For logging. Set per-state.
client bool
// We rate limit per remote endpoint because if we don't we tend to lose
// packets.
limiter *ratelimiter.Limiter
}
// ----------------------------------------------------------------------------
func (s *peerStateData) sendControlPacket(pkt interface{ Marshal([]byte) []byte }) {
s._sendControlPacket(pkt, s.staged)
}
func (s *peerStateData) sendControlPacketTo(pkt interface{ Marshal([]byte) []byte }, addr netip.AddrPort) {
if !addr.IsValid() {
s.logf("ERROR: Attepted to send packet to invalid address: %v", addr)
return
}
route := s.staged
route.Direct = true
route.RemoteAddr = addr
s._sendControlPacket(pkt, route)
}
func (s *peerStateData) _sendControlPacket(pkt interface{ Marshal([]byte) []byte }, route peerRoute) {
if err := s.limiter.Limit(); err != nil {
s.logf("Not sending control packet: rate limited.") // Shouldn't happen.
return
}
_sendControlPacket(pkt, route, s.buf1, s.buf2)
}
// ----------------------------------------------------------------------------
func (s *peerStateData) publish() {
data := s.staged
s.published.Store(&data)
}
func (s *peerStateData) logf(format string, args ...any) {
b := strings.Builder{}
b.WriteString(fmt.Sprintf("%30s: ", s.peer.Name))
if s.client {
b.WriteString("CLIENT | ")
} else {
b.WriteString("SERVER | ")
}
if s.staged.Direct {
b.WriteString("DIRECT | ")
} else {
b.WriteString("RELAYED | ")
}
if s.staged.Up {
b.WriteString("UP | ")
} else {
b.WriteString("DOWN | ")
}
log.Printf(b.String()+format, args...)
}
// ----------------------------------------------------------------------------
func (s *peerStateData) OnPeerUpdate(peer *m.Peer) peerState {
defer s.publish()
if peer == nil {
return enterStateDisconnected(s)
}
s.peer = peer
s.staged = peerRoute{
IP: s.remoteIP,
PubSignKey: peer.PubSignKey,
ControlCipher: newControlCipher(privKey, peer.PubKey),
DataCipher: newDataCipher(),
}
s.remotePub = false
if ip, isValid := netip.AddrFromSlice(peer.PublicIP); isValid {
s.remotePub = true
s.staged.Relay = peer.Relay
s.staged.Direct = true
s.staged.RemoteAddr = netip.AddrPortFrom(ip, peer.Port)
} else if localPub {
s.staged.Direct = true
}
if s.remotePub == localPub {
if localIP < s.remoteIP {
return enterStateServer(s)
}
return enterStateClient(s)
}
if s.remotePub {
return enterStateClient(s)
}
return enterStateServer(s)
}
// ----------------------------------------------------------------------------
type stateDisconnected struct {
*peerStateData
}
func enterStateDisconnected(s *peerStateData) peerState {
s.peer = nil
s.staged = peerRoute{}
s.publish()
return &stateDisconnected{s}
}
func (s *stateDisconnected) OnSyn(controlMsg[synPacket]) {}
func (s *stateDisconnected) OnAck(controlMsg[ackPacket]) {}
func (s *stateDisconnected) OnProbe(controlMsg[probePacket]) {}
func (s *stateDisconnected) OnLocalDiscovery(controlMsg[localDiscoveryPacket]) {}
func (s *stateDisconnected) OnPingTimer() peerState {
return nil
}
// ----------------------------------------------------------------------------
type stateServer struct {
*stateDisconnected
lastSeen time.Time
synTraceID uint64
}
func enterStateServer(s *peerStateData) peerState {
s.client = false
return &stateServer{stateDisconnected: &stateDisconnected{s}}
}
func (s *stateServer) OnSyn(msg controlMsg[synPacket]) {
s.lastSeen = time.Now()
p := msg.Packet
// Before we can respond to this packet, we need to make sure the
// route is setup properly.
//
// The client will update the syn's TraceID whenever there's a change.
// The server will follow the client's request.
if p.TraceID != s.synTraceID || !s.staged.Up {
s.synTraceID = p.TraceID
s.staged.Up = true
s.staged.Direct = p.Direct
s.staged.DataCipher = newDataCipherFromKey(p.SharedKey)
s.staged.RemoteAddr = msg.SrcAddr
s.publish()
s.logf("Got syn.")
}
// Always respond.
ack := ackPacket{
TraceID: p.TraceID,
ToAddr: s.staged.RemoteAddr,
PossibleAddrs: publicAddrs.Get(),
}
s.sendControlPacket(ack)
if s.staged.Direct {
return
}
// Not direct => send probes.
for _, addr := range p.PossibleAddrs {
if !addr.IsValid() {
break
}
s.sendControlPacketTo(probePacket{TraceID: newTraceID()}, addr)
}
}
func (s *stateServer) OnProbe(msg controlMsg[probePacket]) {
if !msg.SrcAddr.IsValid() {
s.logf("Invalid probe address.")
return
}
s.sendControlPacketTo(probePacket{TraceID: msg.Packet.TraceID}, msg.SrcAddr)
}
func (s *stateServer) OnPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval && s.staged.Up {
s.staged.Up = false
s.publish()
s.logf("Connection timeout.")
}
return nil
}
// ----------------------------------------------------------------------------
type stateClient struct {
*stateDisconnected
lastSeen time.Time
syn synPacket
ack ackPacket
probes map[uint64]netip.AddrPort
localDiscoveryAddr netip.AddrPort
}
func enterStateClient(s *peerStateData) peerState {
s.client = true
ss := &stateClient{
stateDisconnected: &stateDisconnected{s},
probes: map[uint64]netip.AddrPort{},
}
ss.syn = synPacket{
TraceID: newTraceID(),
SharedKey: s.staged.DataCipher.Key(),
Direct: s.staged.Direct,
PossibleAddrs: publicAddrs.Get(),
}
ss.sendControlPacket(ss.syn)
return ss
}
func (s *stateClient) sendProbeTo(addr netip.AddrPort) {
probe := probePacket{TraceID: newTraceID()}
s.probes[probe.TraceID] = addr
s.sendControlPacketTo(probe, addr)
}
func (s *stateClient) OnAck(msg controlMsg[ackPacket]) {
if msg.Packet.TraceID != s.syn.TraceID {
s.logf("Ack has incorrect trace ID")
return
}
s.ack = msg.Packet
s.lastSeen = time.Now()
if !s.staged.Up {
s.staged.Up = true
s.logf("Got ack.")
s.publish()
}
// Store possible public address if we're not a public node.
if !localPub && s.remotePub {
publicAddrs.Store(msg.Packet.ToAddr)
}
}
func (s *stateClient) OnProbe(msg controlMsg[probePacket]) {
if s.staged.Direct {
return
}
addr, ok := s.probes[msg.Packet.TraceID]
if !ok {
return
}
s.staged.RemoteAddr = addr
s.staged.Direct = true
s.publish()
s.syn.TraceID = newTraceID()
s.syn.Direct = true
s.syn.PossibleAddrs = [8]netip.AddrPort{}
s.sendControlPacket(s.syn)
s.logf("Established direct connection to %s.", s.staged.RemoteAddr.String())
}
func (s *stateClient) OnLocalDiscovery(msg controlMsg[localDiscoveryPacket]) {
if s.staged.Direct {
return
}
// The source port will be the multicast port, so we'll have to
// construct the correct address using the peer's listed port.
s.localDiscoveryAddr = netip.AddrPortFrom(msg.SrcAddr.Addr(), s.peer.Port)
}
func (s *stateClient) OnPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval {
if s.staged.Up {
s.logf("Connection timeout.")
}
return s.OnPeerUpdate(s.peer)
}
s.sendControlPacket(s.syn)
if s.staged.Direct {
return nil
}
clear(s.probes)
for _, addr := range s.ack.PossibleAddrs {
if !addr.IsValid() {
break
}
s.sendProbeTo(addr)
}
if s.localDiscoveryAddr.IsValid() {
s.sendProbeTo(s.localDiscoveryAddr)
s.localDiscoveryAddr = netip.AddrPort{}
}
return nil
}

View File

@ -1,4 +1,4 @@
package node
package peer
const bitSetSize = 512 // Multiple of 64.

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"math/rand"

View File

@ -1,4 +1,4 @@
package node
package peer
import "golang.org/x/crypto/nacl/box"

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"bytes"

View File

@ -1,9 +1,10 @@
package node
package peer
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"log"
)
type dataCipher struct {
@ -14,7 +15,7 @@ type dataCipher struct {
func newDataCipher() *dataCipher {
key := [32]byte{}
if _, err := rand.Read(key[:]); err != nil {
panic(err)
log.Fatalf("Failed to read random data: %v", err)
}
return newDataCipherFromKey(key)
}
@ -22,12 +23,12 @@ func newDataCipher() *dataCipher {
func newDataCipherFromKey(key [32]byte) *dataCipher {
block, err := aes.NewCipher(key[:])
if err != nil {
panic(err)
log.Fatalf("Failed to create new cipher: %v", err)
}
aead, err := cipher.NewGCM(block)
if err != nil {
panic(err)
log.Fatalf("Failed to create new GCM: %v", err)
}
return &dataCipher{key: key, aead: aead}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"bytes"

View File

@ -1,4 +1,4 @@
package node
package peer
/*
func signData(privKey *[64]byte, h header, data, out []byte) []byte {

140
peer/connreader.go Normal file
View File

@ -0,0 +1,140 @@
package peer
import (
"io"
"log"
"net/netip"
"sync/atomic"
)
type connReader struct {
// Input
readFromUDPAddrPort func([]byte) (int, netip.AddrPort, error)
// Output
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error)
iface io.Writer
handleControlMsg func(fromIP byte, pkt any)
localIP byte
rt *atomic.Pointer[routingTable]
buf []byte
decBuf []byte
}
func newConnReader(
readFromUDPAddrPort func([]byte) (int, netip.AddrPort, error),
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error),
iface io.Writer,
handleControlMsg func(fromIP byte, pkt any),
rt *atomic.Pointer[routingTable],
) *connReader {
return &connReader{
readFromUDPAddrPort: readFromUDPAddrPort,
writeToUDPAddrPort: writeToUDPAddrPort,
iface: iface,
handleControlMsg: handleControlMsg,
localIP: rt.Load().LocalIP,
rt: rt,
buf: newBuf(),
decBuf: newBuf(),
}
}
func (r *connReader) Run() {
for {
r.handleNextPacket()
}
}
func (r *connReader) handleNextPacket() {
buf := r.buf[:bufferSize]
n, remoteAddr, err := r.readFromUDPAddrPort(buf)
if err != nil {
log.Fatalf("Failed to read from UDP port: %v", err)
}
if n < headerSize {
return
}
remoteAddr = netip.AddrPortFrom(remoteAddr.Addr().Unmap(), remoteAddr.Port())
buf = buf[:n]
h := parseHeader(buf)
rt := r.rt.Load()
peer := rt.Peers[h.SourceIP]
switch h.StreamID {
case controlStreamID:
r.handleControlPacket(remoteAddr, peer, h, buf)
case dataStreamID:
r.handleDataPacket(rt, peer, h, buf)
default:
r.logf("Unknown stream ID: %d", h.StreamID)
}
}
func (r *connReader) handleControlPacket(
remoteAddr netip.AddrPort,
peer remotePeer,
h header,
enc []byte,
) {
if peer.ControlCipher == nil {
r.logf("No control cipher for peer: %d", h.SourceIP)
return
}
if h.DestIP != r.localIP {
r.logf("Incorrect destination IP on control packet: %d", h.DestIP)
return
}
msg, err := peer.DecryptControlPacket(remoteAddr, h, enc, r.decBuf)
if err != nil {
r.logf("Failed to decrypt control packet: %v", err)
return
}
r.handleControlMsg(h.SourceIP, msg)
}
func (r *connReader) handleDataPacket(
rt *routingTable,
peer remotePeer,
h header,
enc []byte,
) {
if !peer.Up {
r.logf("Not connected (recv).")
return
}
data, err := peer.DecryptDataPacket(h, enc, r.decBuf)
if err != nil {
r.logf("Failed to decrypt data packet: %v", err)
return
}
if h.DestIP == r.localIP {
if _, err := r.iface.Write(data); err != nil {
log.Fatalf("Failed to write to interface: %v", err)
}
return
}
remote := rt.Peers[h.DestIP]
if !remote.Direct {
r.logf("Unable to relay data to %d.", h.DestIP)
return
}
r.writeToUDPAddrPort(data, remote.DirectAddr)
}
func (r *connReader) logf(format string, args ...any) {
log.Printf("[ConnReader] "+format, args...)
}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"net/netip"
@ -16,25 +16,33 @@ type controlMsg[T any] struct {
func parseControlMsg(srcIP byte, srcAddr netip.AddrPort, buf []byte) (any, error) {
switch buf[0] {
case packetTypeInit:
packet, err := parsePacketInit(buf)
return controlMsg[packetInit]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
}, err
case packetTypeSyn:
packet, err := parseSynPacket(buf)
return controlMsg[synPacket]{
packet, err := parsePacketSyn(buf)
return controlMsg[packetSyn]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
}, err
case packetTypeAck:
packet, err := parseAckPacket(buf)
return controlMsg[ackPacket]{
packet, err := parsePacketAck(buf)
return controlMsg[packetAck]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
}, err
case packetTypeProbe:
packet, err := parseProbePacket(buf)
return controlMsg[probePacket]{
packet, err := parsePacketProbe(buf)
return controlMsg[packetProbe]{
SrcIP: srcIP,
SrcAddr: srcAddr,
Packet: packet,
@ -48,12 +56,9 @@ func parseControlMsg(srcIP byte, srcAddr netip.AddrPort, buf []byte) (any, error
// ----------------------------------------------------------------------------
type peerUpdateMsg struct {
PeerIP byte
Peer *m.Peer
Peer *m.Peer
}
// ----------------------------------------------------------------------------
type pingTimerMsg struct{}
// ----------------------------------------------------------------------------

30
peer/crypto.go Normal file
View File

@ -0,0 +1,30 @@
package peer
import (
"crypto/rand"
"log"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/sign"
)
type cryptoKeys struct {
PubKey []byte
PrivKey []byte
PubSignKey []byte
PrivSignKey []byte
}
func generateKeys() cryptoKeys {
pubKey, privKey, err := box.GenerateKey(rand.Reader)
if err != nil {
log.Fatalf("Failed to generate encryption keys: %v", err)
}
pubSignKey, privSignKey, err := sign.GenerateKey(rand.Reader)
if err != nil {
log.Fatalf("Failed to generate signing keys: %v", err)
}
return cryptoKeys{pubKey[:], privKey[:], pubSignKey[:], privSignKey[:]}
}

191
peer/crypto_test.go Normal file
View File

@ -0,0 +1,191 @@
package peer
import (
"net/netip"
"reflect"
"testing"
)
func newRoutePairForTesting() (*remotePeer, *remotePeer) {
keys1 := generateKeys()
keys2 := generateKeys()
r1 := newRemotePeer(1)
r1.PubSignKey = keys1.PubSignKey
r1.ControlCipher = newControlCipher(keys1.PrivKey, keys2.PubKey)
r1.DataCipher = newDataCipher()
r2 := newRemotePeer(2)
r2.PubSignKey = keys2.PubSignKey
r2.ControlCipher = newControlCipher(keys2.PrivKey, keys1.PubKey)
r2.DataCipher = r1.DataCipher
return r1, r2
}
func TestDecryptControlPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := r1.EncryptControlPacket(in, tmp, out)
h := parseHeader(enc)
iMsg, err := r2.DecryptControlPacket(netip.AddrPort{}, h, enc, tmp)
if err != nil {
t.Fatal(err)
}
msg, ok := iMsg.(controlMsg[packetSyn])
if !ok {
t.Fatal(ok)
}
if !reflect.DeepEqual(msg.Packet, in) {
t.Fatal(msg)
}
}
/*
func TestDecryptControlPacket_decryptionFailed(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
for i := range enc {
x := bytes.Clone(enc)
x[i]++
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, x, tmp)
if !errors.Is(err, errDecryptionFailed) {
t.Fatal(i, err)
}
}
}
func TestDecryptControlPacket_duplicate(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
if _, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp); err != nil {
t.Fatal(err)
}
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp)
if !errors.Is(err, errDuplicateSeqNum) {
t.Fatal(err)
}
}
func TestDecryptControlPacket_invalidPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := testPacket("hello!")
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp)
if !errors.Is(err, errUnknownPacketType) {
t.Fatal(err)
}
}
func TestDecryptDataPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, out)
h := parseHeader(enc)
out, err := decryptDataPacket(r1, h, bytes.Clone(enc), out)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(data, out) {
t.Fatal(data, out)
}
}
func TestDecryptDataPacket_incorrectCipher(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, bytes.Clone(out))
h := parseHeader(enc)
r1.DataCipher = newDataCipher()
_, err := decryptDataPacket(r1, h, enc, bytes.Clone(out))
if !errors.Is(err, errDecryptionFailed) {
t.Fatal(err)
}
}
func TestDecryptDataPacket_duplicate(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, bytes.Clone(out))
h := parseHeader(enc)
_, err := decryptDataPacket(r1, h, enc, bytes.Clone(out))
if err != nil {
t.Fatal(err)
}
_, err = decryptDataPacket(r1, h, enc, bytes.Clone(out))
if !errors.Is(err, errDuplicateSeqNum) {
t.Fatal(err)
}
}
*/

14
peer/data-flow.dot Normal file
View File

@ -0,0 +1,14 @@
digraph d {
ifReader -> connWriter;
connReader -> ifWriter;
connReader -> connWriter;
connReader -> supervisor;
mcReader -> supervisor;
supervisor -> connWriter;
supervisor -> mcWriter;
hubPoller -> supervisor;
connWriter [shape="box"];
mcWriter [shape="box"];
ifWriter [shape="box"];
}

View File

@ -1,4 +1,4 @@
package node
package peer
type dupCheck struct {
bitSet
@ -38,14 +38,14 @@ func (dc *dupCheck) IsDup(counter uint64) bool {
delta := counter - dc.tailCounter
// Full clear.
if delta >= bitSetSize {
if delta >= bitSetSize-1 {
dc.ClearAll()
dc.Set(0)
dc.tail = 1
dc.head = 2
dc.tailCounter = counter + 1
dc.headCounter = dc.tailCounter - bitSetSize
dc.headCounter = dc.tailCounter - bitSetSize + 1
return false
}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"testing"
@ -19,6 +19,7 @@ func TestDupCheck(t *testing.T) {
}
testCases := []TestCase{
{511, true},
{0, true},
{1, true},
{2, true},
@ -39,11 +40,13 @@ func TestDupCheck(t *testing.T) {
{516, false},
{517, true},
{2512, false},
{2000, true},
{2001, false},
{2512, true},
{2001, true},
{2002, false},
{2002, true},
{4000, false},
{4000 - 512, true}, // Too old.
{4000 - 511, false}, // Just in the window.
{4000 - 511, true}, // Too old.
{4000 - 510, false}, // Just in the window.
}
for i, tc := range testCases {

10
peer/errors.go Normal file
View File

@ -0,0 +1,10 @@
package peer
import "errors"
var (
errDecryptionFailed = errors.New("decryption failed")
errDuplicateSeqNum = errors.New("duplicate sequence number")
errMalformedPacket = errors.New("malformed packet")
errUnknownPacketType = errors.New("unknown packet type")
)

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"encoding/json"
@ -8,6 +8,14 @@ import (
"vppn/m"
)
type localConfig struct {
m.PeerConfig
PubKey []byte
PrivKey []byte
PubSignKey []byte
PrivSignKey []byte
}
func configDir(netName string) string {
d, err := os.UserHomeDir()
if err != nil {

57
peer/files_test.go Normal file
View File

@ -0,0 +1,57 @@
package peer
import (
"path/filepath"
"reflect"
"testing"
)
func TestFilePaths(t *testing.T) {
confDir := configDir("netName")
if filepath.Base(confDir) != "netName" {
t.Fatal(confDir)
}
if filepath.Base(filepath.Dir(confDir)) != ".vppn" {
t.Fatal(confDir)
}
path := peerConfigPath("netName")
if path != filepath.Join(confDir, "peer-config.json") {
t.Fatal(path)
}
path = peerStatePath("netName")
if path != filepath.Join(confDir, "peer-state.json") {
t.Fatal(path)
}
}
func TestStoreLoadJson(t *testing.T) {
type Object struct {
Name string
Age int
Price float64
}
tmpDir := t.TempDir()
outPath := filepath.Join(tmpDir, "object.json")
obj := Object{
Name: "Jason",
Age: 22,
Price: 123.534,
}
if err := storeJson(obj, outPath); err != nil {
t.Fatal(err)
}
obj2 := Object{}
if err := loadJson(outPath, &obj2); err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(obj, obj2) {
t.Fatal(obj, obj2)
}
}

37
peer/globals.go Normal file
View File

@ -0,0 +1,37 @@
package peer
import (
"net"
"net/netip"
"time"
)
const (
version = 1
bufferSize = 1536
if_mtu = 1200
if_queue_len = 2048
controlCipherOverhead = 16
dataCipherOverhead = 16
signOverhead = 64
pingInterval = 8 * time.Second
timeoutInterval = 30 * time.Second
broadcastInterval = 16 * time.Second
broadcastErrorTimeoutInterval = 8 * time.Second
)
var multicastAddr = net.UDPAddrFromAddrPort(netip.AddrPortFrom(
netip.AddrFrom4([4]byte{224, 0, 0, 157}),
4560))
func newBuf() []byte {
return make([]byte, bufferSize)
}
type marshaller interface {
Marshal([]byte) []byte
}

View File

@ -1,4 +1,4 @@
package node
package peer
import "unsafe"
@ -20,6 +20,15 @@ type header struct {
Counter uint64 // Init with time.Now().Unix << 30 to ensure monotonic.
}
func parseHeader(b []byte) (h header) {
h.Version = b[0]
h.StreamID = b[1]
h.SourceIP = b[2]
h.DestIP = b[3]
h.Counter = *(*uint64)(unsafe.Pointer(&b[4]))
return h
}
func (h *header) Parse(b []byte) {
h.Version = b[0]
h.StreamID = b[1]

View File

@ -1,4 +1,4 @@
package node
package peer
import "testing"

110
peer/hubpoller.go Normal file
View File

@ -0,0 +1,110 @@
package peer
import (
"encoding/json"
"io"
"log"
"net/http"
"net/url"
"time"
"vppn/m"
)
type hubPoller struct {
client *http.Client
req *http.Request
versions [256]int64
localIP byte
netName string
handleControlMsg func(fromIP byte, msg any)
}
func newHubPoller(
localIP byte,
netName,
hubURL,
apiKey string,
handleControlMsg func(byte, any),
) (*hubPoller, error) {
u, err := url.Parse(hubURL)
if err != nil {
return nil, err
}
u.Path = "/peer/fetch-state/"
client := &http.Client{Timeout: 8 * time.Second}
req := &http.Request{
Method: http.MethodGet,
URL: u,
Header: http.Header{},
}
req.SetBasicAuth("", apiKey)
return &hubPoller{
client: client,
req: req,
localIP: localIP,
netName: netName,
handleControlMsg: handleControlMsg,
}, nil
}
func (hp *hubPoller) logf(s string, args ...any) {
log.Printf("[HubPoller] "+s, args...)
}
func (hp *hubPoller) Run() {
state, err := loadNetworkState(hp.netName)
if err != nil {
hp.logf("Failed to load network state: %v", err)
hp.logf("Polling hub...")
hp.pollHub()
} else {
hp.applyNetworkState(state)
}
for range time.Tick(64 * time.Second) {
hp.pollHub()
}
}
func (hp *hubPoller) pollHub() {
var state m.NetworkState
resp, err := hp.client.Do(hp.req)
if err != nil {
hp.logf("Failed to fetch peer state: %v", err)
return
}
body, err := io.ReadAll(resp.Body)
_ = resp.Body.Close()
if err != nil {
hp.logf("Failed to read body from hub: %v", err)
return
}
if err := json.Unmarshal(body, &state); err != nil {
hp.logf("Failed to unmarshal response from hub: %v\n%s", err, body)
return
}
hp.applyNetworkState(state)
if err := storeNetworkState(hp.netName, state); err != nil {
hp.logf("Failed to store network state: %v", err)
}
}
func (hp *hubPoller) applyNetworkState(state m.NetworkState) {
for i, peer := range state.Peers {
if i != int(hp.localIP) {
if peer == nil || peer.Version != hp.versions[i] {
hp.handleControlMsg(byte(i), peerUpdateMsg{Peer: state.Peers[i]})
if peer != nil {
hp.versions[i] = peer.Version
}
}
}
}
}

103
peer/ifreader.go Normal file
View File

@ -0,0 +1,103 @@
package peer
import (
"io"
"log"
"net/netip"
"sync/atomic"
)
type ifReader struct {
iface io.Reader
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error)
rt *atomic.Pointer[routingTable]
buf1 []byte
buf2 []byte
}
func newIFReader(
iface io.Reader,
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error),
rt *atomic.Pointer[routingTable],
) *ifReader {
return &ifReader{iface, writeToUDPAddrPort, rt, newBuf(), newBuf()}
}
func (r *ifReader) Run() {
packet := newBuf()
for {
r.handleNextPacket(packet)
}
}
func (r *ifReader) handleNextPacket(packet []byte) {
packet = r.readNextPacket(packet)
remoteIP, ok := r.parsePacket(packet)
if !ok {
return
}
rt := r.rt.Load()
peer := rt.Peers[remoteIP]
if !peer.Up {
r.logf("Peer %d not up.", peer.IP)
return
}
enc := peer.EncryptDataPacket(peer.IP, packet, r.buf1)
if peer.Direct {
r.writeToUDPAddrPort(enc, peer.DirectAddr)
return
}
relay, ok := rt.GetRelay()
if !ok {
r.logf("Relay not available for peer %d.", peer.IP)
return
}
enc = relay.EncryptDataPacket(peer.IP, enc, r.buf2)
r.writeToUDPAddrPort(enc, relay.DirectAddr)
}
func (r *ifReader) readNextPacket(buf []byte) []byte {
n, err := r.iface.Read(buf[:cap(buf)])
if err != nil {
log.Fatalf("Failed to read from interface: %v", err)
}
return buf[:n]
}
func (r *ifReader) parsePacket(buf []byte) (byte, bool) {
n := len(buf)
if n == 0 {
return 0, false
}
version := buf[0] >> 4
switch version {
case 4:
if n < 20 {
r.logf("Short IPv4 packet: %d", len(buf))
return 0, false
}
return buf[19], true
case 6:
if len(buf) < 40 {
r.logf("Short IPv6 packet: %d", len(buf))
return 0, false
}
return buf[39], true
default:
r.logf("Invalid IP packet version: %v", version)
return 0, false
}
}
func (*ifReader) logf(s string, args ...any) {
log.Printf("[IFReader] "+s, args...)
}

81
peer/ifreader_test.go Normal file
View File

@ -0,0 +1,81 @@
package peer
/*
func TestIFReader_IPv4(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
pkt := make([]byte, 1234)
pkt[0] = 4 << 4
pkt[19] = 2 // IP.
p1.IFace.UserWrite(pkt)
p1.IFReader.handleNextPacket(newBuf())
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestIFReader_IPv6(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
pkt := make([]byte, 1234)
pkt[0] = 6 << 4
pkt[39] = 2 // IP.
p1.IFace.UserWrite(pkt)
p1.IFReader.handleNextPacket(newBuf())
packets := p2.Conn.Packets()
if len(packets) != 1 {
t.Fatal(packets)
}
}
func TestIFReader_parsePacket_emptyPacket(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 0)
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}
func TestIFReader_parsePacket_invalidIPVersion(t *testing.T) {
r := NewIFReader(nil, nil)
for i := byte(1); i < 16; i++ {
if i == 4 || i == 6 {
continue
}
pkt := make([]byte, 1234)
pkt[0] = i << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(i, ip, ok)
}
}
}
func TestIFReader_parsePacket_shortIPv4(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 19)
pkt[0] = 4 << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}
func TestIFReader_parsePacket_shortIPv6(t *testing.T) {
r := NewIFReader(nil, nil)
pkt := make([]byte, 39)
pkt[0] = 6 << 4
if ip, ok := r.parsePacket(pkt); ok {
t.Fatal(ip, ok)
}
}
*/

View File

@ -1,9 +1,8 @@
package node
package peer
import (
"fmt"
"io"
"log"
"net"
"os"
"syscall"
@ -11,45 +10,6 @@ import (
"golang.org/x/sys/unix"
)
// Get next packet, returning packet, ip, and possible error.
func readNextPacket(iface io.ReadWriteCloser, buf []byte) ([]byte, byte, error) {
var (
version byte
ip byte
)
for {
n, err := iface.Read(buf[:cap(buf)])
if err != nil {
return nil, ip, err
}
buf = buf[:n]
version = buf[0] >> 4
switch version {
case 4:
if n < 20 {
log.Printf("Short IPv4 packet: %d", len(buf))
continue
}
ip = buf[19]
case 6:
if len(buf) < 40 {
log.Printf("Short IPv6 packet: %d", len(buf))
continue
}
ip = buf[39]
default:
log.Printf("Invalid IP packet version: %v", version)
continue
}
return buf, ip, nil
}
}
func openInterface(network []byte, localIP byte, name string) (io.ReadWriteCloser, error) {
if len(network) != 4 {
return nil, fmt.Errorf("expected network to be 4 bytes, got %d", len(network))

23
peer/main.go Normal file
View File

@ -0,0 +1,23 @@
package peer
import (
"flag"
"os"
)
func Main() {
conf := peerConfig{}
flag.StringVar(&conf.NetName, "name", "", "[REQUIRED] The network name.")
flag.StringVar(&conf.HubAddress, "hub-address", "", "[REQUIRED] The hub address.")
flag.StringVar(&conf.APIKey, "api-key", "", "[REQUIRED] The node's API key.")
flag.Parse()
if conf.NetName == "" || conf.HubAddress == "" || conf.APIKey == "" {
flag.Usage()
os.Exit(1)
}
peer := newPeerMain(conf)
peer.Run()
}

70
peer/mcreader.go Normal file
View File

@ -0,0 +1,70 @@
package peer
import (
"log"
"net"
"sync/atomic"
"time"
)
func runMCReader(
rt *atomic.Pointer[routingTable],
handleControlMsg func(destIP byte, msg any),
) {
for {
runMCReaderInner(rt, handleControlMsg)
time.Sleep(broadcastErrorTimeoutInterval)
}
}
func runMCReaderInner(
rt *atomic.Pointer[routingTable],
handleControlMsg func(destIP byte, msg any),
) {
var (
raw = newBuf()
buf = newBuf()
logf = func(s string, args ...any) {
log.Printf("[MCReader] "+s, args...)
}
)
conn, err := net.ListenMulticastUDP("udp", nil, multicastAddr)
if err != nil {
logf("Failed to bind to multicast address: %v", err)
return
}
for {
conn.SetReadDeadline(time.Now().Add(32 * time.Second))
n, remoteAddr, err := conn.ReadFromUDPAddrPort(raw[:bufferSize])
if err != nil {
logf("Failed to read from UDP port): %v", err)
return
}
raw = raw[:n]
h, ok := headerFromLocalDiscoveryPacket(raw)
if !ok {
logf("Failed to open discovery packet?")
continue
}
peer := rt.Load().Peers[h.SourceIP]
if peer.PubSignKey == nil {
logf("No signing key for peer %d.", h.SourceIP)
continue
}
if !verifyLocalDiscoveryPacket(raw, buf, peer.PubSignKey) {
logf("Invalid signature from peer: %d", h.SourceIP)
continue
}
msg := controlMsg[packetLocalDiscovery]{
SrcIP: h.SourceIP,
SrcAddr: remoteAddr,
}
handleControlMsg(h.SourceIP, msg)
}
}

132
peer/mcreader_test.go Normal file
View File

@ -0,0 +1,132 @@
package peer
/*
type mcMockConn struct {
packets chan []byte
}
func newMCMockConn() *mcMockConn {
return &mcMockConn{make(chan []byte, 32)}
}
func (c *mcMockConn) WriteToUDP(in []byte, addr *net.UDPAddr) (int, error) {
c.packets <- bytes.Clone(in)
return len(in), nil
}
func (c *mcMockConn) ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error) {
buf := <-c.packets
b = b[:len(buf)]
copy(b, buf)
return len(b), netip.AddrPort{}, nil
}
func TestMCReader(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 1, keys.PrivSignKey)
r := newMCReader(conn, super, peers)
w.SendLocalDiscovery()
r.handleNextPacket()
if len(super.Messages) != 1 {
t.Fatal(super.Messages)
}
msg, ok := super.Messages[0].(controlMsg[PacketLocalDiscovery])
if !ok || msg.SrcIP != 1 {
t.Fatal(ok, msg)
}
}
func TestMCReader_noHeader(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
r := newMCReader(conn, super, peers)
conn.WriteToUDP([]byte("0123546789"), nil)
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}
func TestMCReader_noPeer(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[2] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 2, keys.PrivSignKey)
r := newMCReader(conn, super, peers)
w.SendLocalDiscovery()
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}
func TestMCReader_badSignature(t *testing.T) {
keys := generateKeys()
super := &mockControlMsgHandler{}
conn := newMCMockConn()
peers := [256]*atomic.Pointer[RemotePeer]{}
peer := &RemotePeer{
IP: 1,
Up: true,
PubSignKey: keys.PubSignKey,
}
peers[1] = &atomic.Pointer[RemotePeer]{}
peers[1].Store(peer)
w := newMCWriter(conn, 1, keys.PrivSignKey)
w.SendLocalDiscovery()
// Break signing.
packet := <-conn.packets
packet[0]++
conn.packets <- packet
r := newMCReader(conn, super, peers)
r.handleNextPacket()
if len(super.Messages) != 0 {
t.Fatal(super.Messages)
}
}
*/

53
peer/mcwriter.go Normal file
View File

@ -0,0 +1,53 @@
package peer
import (
"log"
"net"
"time"
"golang.org/x/crypto/nacl/sign"
)
func createLocalDiscoveryPacket(localIP byte, signingKey []byte) []byte {
h := header{
SourceIP: localIP,
DestIP: 255,
}
buf := make([]byte, headerSize)
h.Marshal(buf)
out := make([]byte, headerSize+signOverhead)
return sign.Sign(out[:0], buf, (*[64]byte)(signingKey))
}
func headerFromLocalDiscoveryPacket(pkt []byte) (h header, ok bool) {
if len(pkt) != headerSize+signOverhead {
return
}
h.Parse(pkt[signOverhead:])
ok = true
return
}
func verifyLocalDiscoveryPacket(pkt, buf []byte, pubSignKey []byte) bool {
_, ok := sign.Open(buf[:0], pkt, (*[32]byte)(pubSignKey))
return ok
}
// ----------------------------------------------------------------------------
func runMCWriter(localIP byte, signingKey []byte) {
discoveryPacket := createLocalDiscoveryPacket(localIP, signingKey)
conn, err := net.ListenMulticastUDP("udp", nil, multicastAddr)
if err != nil {
log.Fatalf("[MCWriter] Failed to bind to multicast address: %v", err)
}
for range time.Tick(broadcastInterval) {
_, err := conn.WriteToUDP(discoveryPacket, multicastAddr)
if err != nil {
log.Printf("[MCWriter] Failed to write multicast: %v", err)
}
}
}

98
peer/mcwriter_test.go Normal file
View File

@ -0,0 +1,98 @@
package peer
/*
// ----------------------------------------------------------------------------
// Testing that we can create and verify a local discovery packet.
func TestVerifyLocalDiscoveryPacket_valid(t *testing.T) {
keys := generateKeys()
created := createLocalDiscoveryPacket(55, keys.PrivSignKey)
header, ok := headerFromLocalDiscoveryPacket(created)
if !ok {
t.Fatal(ok)
}
if header.SourceIP != 55 || header.DestIP != 255 {
t.Fatal(header)
}
if !verifyLocalDiscoveryPacket(created, make([]byte, 1024), keys.PubSignKey) {
t.Fatal("Not valid")
}
}
// Testing that we don't try to parse short packets.
func TestVerifyLocalDiscoveryPacket_tooShort(t *testing.T) {
keys := generateKeys()
created := createLocalDiscoveryPacket(55, keys.PrivSignKey)
_, ok := headerFromLocalDiscoveryPacket(created[:len(created)-1])
if ok {
t.Fatal(ok)
}
}
// Testing that modifying a packet makes it invalid.
func TestVerifyLocalDiscoveryPacket_invalid(t *testing.T) {
keys := generateKeys()
created := createLocalDiscoveryPacket(55, keys.PrivSignKey)
buf := make([]byte, 1024)
for i := range created {
modified := bytes.Clone(created)
modified[i]++
if verifyLocalDiscoveryPacket(modified, buf, keys.PubSignKey) {
t.Fatal("Verification should have failed.")
}
}
}
// ----------------------------------------------------------------------------
type testUDPWriter struct {
written [][]byte
}
func (w *testUDPWriter) WriteToUDP(b []byte, addr *net.UDPAddr) (int, error) {
w.written = append(w.written, bytes.Clone(b))
return len(b), nil
}
func (w *testUDPWriter) Written() [][]byte {
out := w.written
w.written = [][]byte{}
return out
}
// ----------------------------------------------------------------------------
// Testing that the mcWriter sends local discovery packets as expected.
func TestMCWriter_SendLocalDiscovery(t *testing.T) {
keys := generateKeys()
writer := &testUDPWriter{}
mcw := newMCWriter(writer, 42, keys.PrivSignKey)
mcw.SendLocalDiscovery()
out := writer.Written()
if len(out) != 1 {
t.Fatal(out)
}
pkt := out[0]
header, ok := headerFromLocalDiscoveryPacket(pkt)
if !ok {
t.Fatal(ok)
}
if header.SourceIP != 42 || header.DestIP != 255 {
t.Fatal(header)
}
if !verifyLocalDiscoveryPacket(pkt, make([]byte, 1024), keys.PubSignKey) {
t.Fatal("Verification should succeed.")
}
}
*/

31
peer/mock-iface_test.go Normal file
View File

@ -0,0 +1,31 @@
package peer
import "bytes"
type TestIFace struct {
out *bytes.Buffer // Toward the network.
in *bytes.Buffer // From the network
}
func NewTestIFace() *TestIFace {
return &TestIFace{
out: &bytes.Buffer{},
in: &bytes.Buffer{},
}
}
func (iface *TestIFace) Write(b []byte) (int, error) {
return iface.in.Write(b)
}
func (iface *TestIFace) Read(b []byte) (int, error) {
return iface.out.Read(b)
}
func (iface *TestIFace) UserWrite(b []byte) (int, error) {
return iface.out.Write(b)
}
func (iface *TestIFace) UserRead(b []byte) (int, error) {
return iface.in.Read(b)
}

80
peer/mock-network_test.go Normal file
View File

@ -0,0 +1,80 @@
package peer
import (
"bytes"
"net"
"net/netip"
"sync"
)
type TestPacket struct {
Addr netip.AddrPort
Data []byte
}
type TestNetwork struct {
lock sync.Mutex
packets map[netip.AddrPort]chan TestPacket
}
func NewTestNetwork() *TestNetwork {
return &TestNetwork{packets: map[netip.AddrPort]chan TestPacket{}}
}
func (n *TestNetwork) NewUDPConn(localAddr netip.AddrPort) *TestUDPConn {
n.lock.Lock()
defer n.lock.Unlock()
if _, ok := n.packets[localAddr]; !ok {
n.packets[localAddr] = make(chan TestPacket, 1024)
}
return &TestUDPConn{
addr: localAddr,
n: n,
packets: n.packets[localAddr],
}
}
func (n *TestNetwork) write(b []byte, from, to netip.AddrPort) {
n.lock.Lock()
defer n.lock.Unlock()
if _, ok := n.packets[to]; !ok {
n.packets[to] = make(chan TestPacket, 1024)
}
n.packets[to] <- TestPacket{
Addr: from,
Data: bytes.Clone(b),
}
}
type TestUDPConn struct {
addr netip.AddrPort
n *TestNetwork
packets chan TestPacket
}
func (c *TestUDPConn) WriteToUDPAddrPort(b []byte, addr netip.AddrPort) (int, error) {
c.n.write(b, c.addr, addr)
return len(b), nil
}
func (c *TestUDPConn) WriteToUDP(b []byte, addr *net.UDPAddr) (int, error) {
return c.WriteToUDPAddrPort(b, addr.AddrPort())
}
func (c *TestUDPConn) ReadFromUDPAddrPort(b []byte) (n int, addr netip.AddrPort, err error) {
pkt := <-c.packets
b = b[:len(pkt.Data)]
copy(b, pkt.Data)
return len(b), pkt.Addr, nil
}
func (c *TestUDPConn) Packets() (out []TestPacket) {
for {
select {
case pkt := <-c.packets:
out = append(out, pkt)
default:
return
}
}
}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"net/netip"
@ -70,7 +70,7 @@ func (w *binWriter) AddrPort(addrPort netip.AddrPort) *binWriter {
return w.Uint16(addrPort.Port())
}
func (w *binWriter) AddrPortArray(l [8]netip.AddrPort) *binWriter {
func (w *binWriter) AddrPort8(l [8]netip.AddrPort) *binWriter {
for _, addrPort := range l {
w.AddrPort(addrPort)
}
@ -178,7 +178,7 @@ func (r *binReader) AddrPort(x *netip.AddrPort) *binReader {
return r
}
func (r *binReader) AddrPortArray(x *[8]netip.AddrPort) *binReader {
func (r *binReader) AddrPort8(x *[8]netip.AddrPort) *binReader {
for i := range x {
r.AddrPort(&x[i])
}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"net/netip"
@ -6,6 +6,26 @@ import (
"testing"
)
func TestBinWriteRead_invalidAddrPort(t *testing.T) {
addr := netip.AddrPort{}
buf := make([]byte, 1024)
buf = newBinWriter(buf).
AddrPort(addr).
Build()
var addr2 netip.AddrPort
err := newBinReader(buf).
AddrPort(&addr2).
Error()
if err != nil {
t.Fatal(err)
}
if addr2.IsValid() {
t.Fatal(addr, addr2)
}
}
func TestBinWriteRead(t *testing.T) {
buf := make([]byte, 1024)
@ -35,7 +55,7 @@ func TestBinWriteRead(t *testing.T) {
Byte(in.Type).
Uint64(in.TraceID).
AddrPort(in.DestAddr).
AddrPortArray(in.Addrs).
AddrPort8(in.Addrs).
Build()
out := Item{}
@ -44,7 +64,7 @@ func TestBinWriteRead(t *testing.T) {
Byte(&out.Type).
Uint64(&out.TraceID).
AddrPort(&out.DestAddr).
AddrPortArray(&out.Addrs).
AddrPort8(&out.Addrs).
Error()
if err != nil {
t.Fatal(err)

120
peer/packets.go Normal file
View File

@ -0,0 +1,120 @@
package peer
import (
"net/netip"
)
const (
packetTypeSyn = 1
packetTypeInit = 2
packetTypeAck = 3
packetTypeProbe = 4
packetTypeAddrDiscovery = 5
)
// ----------------------------------------------------------------------------
type packetInit struct {
TraceID uint64
Direct bool
Version uint64
}
func (p packetInit) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeInit).
Uint64(p.TraceID).
Bool(p.Direct).
Uint64(p.Version).
Build()
}
func parsePacketInit(buf []byte) (p packetInit, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
Bool(&p.Direct).
Uint64(&p.Version).
Error()
return
}
// ----------------------------------------------------------------------------
type packetSyn struct {
TraceID uint64 // TraceID to match response w/ request.
SharedKey [32]byte // Our shared key.
Direct bool
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p packetSyn) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeSyn).
Uint64(p.TraceID).
SharedKey(p.SharedKey).
Bool(p.Direct).
AddrPort8(p.PossibleAddrs).
Build()
}
func parsePacketSyn(buf []byte) (p packetSyn, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
SharedKey(&p.SharedKey).
Bool(&p.Direct).
AddrPort8(&p.PossibleAddrs).
Error()
return
}
// ----------------------------------------------------------------------------
type packetAck struct {
TraceID uint64
ToAddr netip.AddrPort
PossibleAddrs [8]netip.AddrPort // Possible public addresses of the sender.
}
func (p packetAck) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeAck).
Uint64(p.TraceID).
AddrPort(p.ToAddr).
AddrPort8(p.PossibleAddrs).
Build()
}
func parsePacketAck(buf []byte) (p packetAck, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
AddrPort(&p.ToAddr).
AddrPort8(&p.PossibleAddrs).
Error()
return
}
// ----------------------------------------------------------------------------
// A probeReqPacket is sent from a client to a server to determine if direct
// UDP communication can be used.
type packetProbe struct {
TraceID uint64
}
func (p packetProbe) Marshal(buf []byte) []byte {
return newBinWriter(buf).
Byte(packetTypeProbe).
Uint64(p.TraceID).
Build()
}
func parsePacketProbe(buf []byte) (p packetProbe, err error) {
err = newBinReader(buf[1:]).
Uint64(&p.TraceID).
Error()
return
}
// ----------------------------------------------------------------------------
type packetLocalDiscovery struct{}

66
peer/packets_test.go Normal file
View File

@ -0,0 +1,66 @@
package peer
import (
"crypto/rand"
"net/netip"
"reflect"
"testing"
)
func TestSynPacket(t *testing.T) {
p := packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
}
rand.Read(p.SharedKey[:])
p.PossibleAddrs[0] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 2, 3, 4}), 234)
p.PossibleAddrs[1] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{2, 2, 3, 4}), 12399)
p.PossibleAddrs[2] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{3, 2, 3, 4}), 60000)
buf := p.Marshal(newBuf())
p2, err := parsePacketSyn(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}
func TestAckPacket(t *testing.T) {
p := packetAck{
TraceID: newTraceID(),
ToAddr: netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 2, 3, 4}), 234),
}
p.PossibleAddrs[0] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{8, 2, 3, 4}), 100)
p.PossibleAddrs[1] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{2, 2, 3, 4}), 12399)
p.PossibleAddrs[2] = netip.AddrPortFrom(netip.AddrFrom4([4]byte{3, 2, 3, 4}), 60000)
buf := p.Marshal(newBuf())
p2, err := parsePacketAck(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}
func TestProbePacket(t *testing.T) {
p := packetProbe{
TraceID: newTraceID(),
}
buf := p.Marshal(newBuf())
p2, err := parsePacketProbe(buf)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(p, p2) {
t.Fatal(p2)
}
}

177
peer/peer.go Normal file
View File

@ -0,0 +1,177 @@
package peer
import (
"bytes"
"encoding/json"
"fmt"
"io"
"log"
"net"
"net/http"
"net/netip"
"net/url"
"sync"
"sync/atomic"
"vppn/m"
)
type peerMain struct {
conf localConfig
rt *atomic.Pointer[routingTable]
ifReader *ifReader
connReader *connReader
iface io.Writer
hubPoller *hubPoller
super *supervisor
}
type peerConfig struct {
NetName string
HubAddress string
APIKey string
}
func newPeerMain(conf peerConfig) *peerMain {
logf := func(s string, args ...any) {
log.Printf("[Main] "+s, args...)
}
config, err := loadPeerConfig(conf.NetName)
if err != nil {
logf("Failed to load configuration: %v", err)
logf("Initializing...")
initPeerWithHub(conf)
config, err = loadPeerConfig(conf.NetName)
if err != nil {
log.Fatalf("Failed to load configuration: %v", err)
}
}
iface, err := openInterface(config.Network, config.PeerIP, conf.NetName)
if err != nil {
log.Fatalf("Failed to open interface: %v", err)
}
myAddr, err := net.ResolveUDPAddr("udp", fmt.Sprintf(":%d", config.Port))
if err != nil {
log.Fatalf("Failed to resolve UDP address: %v", err)
}
logf("Listening on %v...", myAddr)
conn, err := net.ListenUDP("udp", myAddr)
if err != nil {
log.Fatalf("Failed to open UDP port: %v", err)
}
conn.SetReadBuffer(1024 * 1024 * 8)
conn.SetWriteBuffer(1024 * 1024 * 8)
// Wrap write function - this is necessary to avoid starvation.
writeLock := sync.Mutex{}
writeToUDPAddrPort := func(b []byte, addr netip.AddrPort) (n int, err error) {
writeLock.Lock()
n, err = conn.WriteToUDPAddrPort(b, addr)
if err != nil {
logf("Failed to write packet: %v", err)
}
writeLock.Unlock()
return n, err
}
var localAddr netip.AddrPort
ip, localAddrValid := netip.AddrFromSlice(config.PublicIP)
if localAddrValid {
localAddr = netip.AddrPortFrom(ip, config.Port)
}
rt := newRoutingTable(config.PeerIP, localAddr)
rtPtr := &atomic.Pointer[routingTable]{}
rtPtr.Store(&rt)
ifReader := newIFReader(iface, writeToUDPAddrPort, rtPtr)
super := newSupervisor(writeToUDPAddrPort, rtPtr, config.PrivKey)
connReader := newConnReader(conn.ReadFromUDPAddrPort, writeToUDPAddrPort, iface, super.HandleControlMsg, rtPtr)
hubPoller, err := newHubPoller(config.PeerIP, conf.NetName, conf.HubAddress, conf.APIKey, super.HandleControlMsg)
if err != nil {
log.Fatalf("Failed to create hub poller: %v", err)
}
return &peerMain{
conf: config,
rt: rtPtr,
iface: iface,
ifReader: ifReader,
connReader: connReader,
hubPoller: hubPoller,
super: super,
}
}
func (p *peerMain) Run() {
go p.ifReader.Run()
go p.connReader.Run()
p.super.Start()
if !p.rt.Load().LocalAddr.IsValid() {
go runMCWriter(p.conf.PeerIP, p.conf.PrivSignKey)
go runMCReader(p.rt, p.super.HandleControlMsg)
}
go p.hubPoller.Run()
select {}
}
func initPeerWithHub(conf peerConfig) {
keys := generateKeys()
initURL, err := url.Parse(conf.HubAddress)
if err != nil {
log.Fatalf("Failed to parse hub URL: %v", err)
}
initURL.Path = "/peer/init/"
args := m.PeerInitArgs{
EncPubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
buf := &bytes.Buffer{}
if err := json.NewEncoder(buf).Encode(args); err != nil {
log.Fatalf("Failed to encode init args: %v", err)
}
req, err := http.NewRequest(http.MethodPost, initURL.String(), buf)
if err != nil {
log.Fatalf("Failed to construct request: %v", err)
}
req.SetBasicAuth("", conf.APIKey)
resp, err := http.DefaultClient.Do(req)
if err != nil {
log.Fatalf("Failed to init with hub: %v", err)
}
defer resp.Body.Close()
data, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatalf("Failed to read response body: %v", err)
}
peerConfig := localConfig{}
if err := json.Unmarshal(data, &peerConfig.PeerConfig); err != nil {
log.Fatalf("Failed to parse configuration: %v\n%s", err, data)
}
peerConfig.PubKey = keys.PubKey
peerConfig.PrivKey = keys.PrivKey
peerConfig.PubSignKey = keys.PubSignKey
peerConfig.PrivSignKey = keys.PrivSignKey
if err := storePeerConfig(conf.NetName, peerConfig); err != nil {
log.Fatalf("Failed to store configuration: %v", err)
}
log.Print("Initialization successful.")
}

114
peer/peer_test.go Normal file
View File

@ -0,0 +1,114 @@
package peer
import (
"bytes"
"crypto/rand"
mrand "math/rand"
"net/netip"
"sync/atomic"
)
// A test peer.
type P struct {
cryptoKeys
RT *atomic.Pointer[routingTable]
Conn *TestUDPConn
IFace *TestIFace
ConnReader *connReader
IFReader *ifReader
}
func NewPeerForTesting(n *TestNetwork, ip byte, addr netip.AddrPort) P {
p := P{
cryptoKeys: generateKeys(),
RT: &atomic.Pointer[routingTable]{},
IFace: NewTestIFace(),
}
rt := newRoutingTable(ip, addr)
p.RT.Store(&rt)
p.Conn = n.NewUDPConn(addr)
//p.ConnWriter = NewConnWriter(p.Conn.WriteToUDPAddrPort, p.RT)
return p
}
func ConnectPeers(p1, p2 *P) {
rt1 := p1.RT.Load()
rt2 := p2.RT.Load()
ip1 := rt1.LocalIP
ip2 := rt2.LocalIP
rt1.Peers[ip2].Up = true
rt1.Peers[ip2].Direct = true
rt1.Peers[ip2].Relay = true
rt1.Peers[ip2].DirectAddr = rt2.LocalAddr
rt1.Peers[ip2].PubSignKey = p2.PubSignKey
rt1.Peers[ip2].ControlCipher = newControlCipher(p1.PrivKey, p2.PubKey)
rt1.Peers[ip2].DataCipher = newDataCipher()
rt2.Peers[ip1].Up = true
rt2.Peers[ip1].Direct = true
rt2.Peers[ip1].Relay = true
rt2.Peers[ip1].DirectAddr = rt1.LocalAddr
rt2.Peers[ip1].PubSignKey = p1.PubSignKey
rt2.Peers[ip1].ControlCipher = newControlCipher(p2.PrivKey, p1.PubKey)
rt2.Peers[ip1].DataCipher = rt1.Peers[ip2].DataCipher
}
func NewPeersForTesting() (p1, p2, p3 P) {
n := NewTestNetwork()
p1 = NewPeerForTesting(
n,
1,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 1}), 100))
p2 = NewPeerForTesting(
n,
2,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 2}), 200))
p3 = NewPeerForTesting(
n,
3,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 3}), 300))
ConnectPeers(&p1, &p2)
ConnectPeers(&p1, &p3)
ConnectPeers(&p2, &p3)
return
}
func RandPacket() []byte {
n := mrand.Intn(1200)
b := make([]byte, n)
rand.Read(b)
return b
}
func ModifyPacket(in []byte) []byte {
x := make([]byte, 1)
for {
rand.Read(x)
out := bytes.Clone(in)
idx := mrand.Intn(len(out))
if out[idx] != x[0] {
out[idx] = x[0]
return out
}
}
}
// ----------------------------------------------------------------------------
type UnknownControlPacket struct {
TraceID uint64
}
func (p UnknownControlPacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).Byte(255).Uint64(p.TraceID).Build()
}

371
peer/peerstates_test.go Normal file
View File

@ -0,0 +1,371 @@
package peer
import (
"testing"
"vppn/m"
)
// ----------------------------------------------------------------------------
func TestPeerState_OnPeerUpdate_nilPeer(t *testing.T) {
h := NewPeerStateTestHarness()
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestPeerState_OnPeerUpdate_publicLocalIsServer(t *testing.T) {
keys := generateKeys()
h := NewPeerStateTestHarness()
state := h.State.(*stateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
assertType[*stateServer](t, h.State)
}
/*
func TestPeerState_OnPeerUpdate_clientDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
}
/*
func TestPeerState_OnPeerUpdate_clientRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
}
/*
func TestStateServer_directSyn(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 1)
ack := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0].IsValid(), false)
assertEqual(t, h.Published.Up, true)
}
func TestStateServer_relayedSyn(t *testing.T) {
h := NewPeerStateTestHarness()
state := h.ConfigServer_Relayed(t)
state.pubAddrs.Store(addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: false,
},
}
synMsg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 3, 300)
synMsg.Packet.PossibleAddrs[1] = addrPort4(2, 2, 2, 3, 300)
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 3)
ack := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0], addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, ack.PossibleAddrs[1].IsValid(), false)
assertEqual(t, h.Published.Up, true)
assertType[packetProbe](t, h.Sent[1].Packet)
assertType[packetProbe](t, h.Sent[2].Packet)
assertEqual(t, h.Sent[1].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 300))
}
func TestStateServer_onProbe(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
probeMsg := controlMsg[packetProbe]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetProbe{TraceID: newTraceID()},
}
h.State = h.State.OnMsg(probeMsg)
assertEqual(t, len(h.Sent), 1)
probe := assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, probe.TraceID, probeMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
}
func TestStateServer_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Published.Up, true)
// Ping shouldn't timeout.
h.OnPingTimer()
assertEqual(t, h.Published.Up, true)
// Advance the time, then ping.
state := assertType[*stateServer](t, h.State)
state.lastSeen = time.Now().Add(-timeoutInterval - time.Second)
h.OnPingTimer()
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientDirect_OnAck_incorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID + 1},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
assertType[packetSyn](t, h.Sent[0].Packet)
h.OnPingTimer()
// On ping timer, another syn should be sent. Additionally, we should remain
// in the same state.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*stateClientDirect](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientRelayed_OnPingTimer_noAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
// If we haven't had an ack yet, we won't have addresses to probe. Therefore
// we'll have just one more syn packet sent.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 2)
}
func TestStateClientRelayed_OnPingTimer_withAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{Packet: packetAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State = h.State.OnMsg(ack)
// Add a local discovery address. Note that the port will be configured port
// and no the one provided here.
h.State = h.State.OnMsg(controlMsg[packetLocalDiscovery]{
SrcIP: 3,
SrcAddr: addrPort4(2, 2, 2, 3, 300),
})
// We should see one SYN and three probe packets.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 5)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[packetProbe](t, h.Sent[2].Packet)
assertType[packetProbe](t, h.Sent[3].Packet)
assertType[packetProbe](t, h.Sent[4].Packet)
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(1, 1, 1, 1, 300))
assertEqual(t, h.Sent[3].Peer.DirectAddr, addrPort4(1, 1, 1, 2, 300))
assertEqual(t, h.Sent[4].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 456))
}
func TestStateClientRelayed_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*stateClientRelayed](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientRelayed](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnProbe_unknownAddr(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.OnProbe(controlMsg[packetProbe]{
Packet: packetProbe{TraceID: newTraceID()},
})
assertType[*stateClientRelayed](t, h.State)
}
func TestStateClientRelayed_OnProbe_upgradeDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{Packet: packetAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State = h.State.OnMsg(ack)
h.OnPingTimer()
probe := assertType[packetProbe](t, h.Sent[2].Packet)
h.OnProbe(controlMsg[packetProbe]{Packet: probe})
assertType[*stateClientDirect](t, h.State)
}
*/

148
peer/peersuper.go Normal file
View File

@ -0,0 +1,148 @@
package peer
import (
"net/netip"
"sync"
"sync/atomic"
"time"
"git.crumpington.com/lib/go/ratelimiter"
)
type supervisor struct {
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error)
staged routingTable
shared *atomic.Pointer[routingTable]
peers [256]*peerSuper
lock sync.Mutex
buf1 []byte
buf2 []byte
}
func newSupervisor(
writeToUDPAddrPort func([]byte, netip.AddrPort) (int, error),
rt *atomic.Pointer[routingTable],
privKey []byte,
) *supervisor {
routes := rt.Load()
s := &supervisor{
writeToUDPAddrPort: writeToUDPAddrPort,
staged: *routes,
shared: rt,
buf1: newBuf(),
buf2: newBuf(),
}
pubAddrs := newPubAddrStore(routes.LocalAddr)
for i := range s.peers {
state := &peerData{
publish: s.publish,
sendControlPacket: s.send,
pingTimer: time.NewTicker(timeoutInterval),
localIP: routes.LocalIP,
remoteIP: byte(i),
privKey: privKey,
localAddr: routes.LocalAddr,
pubAddrs: pubAddrs,
staged: routes.Peers[i],
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
s.peers[i] = newPeerSuper(state, state.pingTimer)
}
return s
}
func (s *supervisor) Start() {
for i := range s.peers {
go s.peers[i].Run()
}
}
func (s *supervisor) HandleControlMsg(destIP byte, msg any) {
s.peers[destIP].HandleControlMsg(msg)
}
func (s *supervisor) send(peer remotePeer, pkt marshaller) {
s.lock.Lock()
defer s.lock.Unlock()
enc := peer.EncryptControlPacket(pkt, s.buf1, s.buf2)
if peer.Direct {
s.writeToUDPAddrPort(enc, peer.DirectAddr)
return
}
relay, ok := s.staged.GetRelay()
if !ok {
return
}
enc = relay.EncryptDataPacket(peer.IP, enc, s.buf1)
s.writeToUDPAddrPort(enc, relay.DirectAddr)
}
func (s *supervisor) publish(rp remotePeer) {
s.lock.Lock()
defer s.lock.Unlock()
s.staged.Peers[rp.IP] = rp
s.ensureRelay()
copy := s.staged
s.shared.Store(&copy)
}
func (s *supervisor) ensureRelay() {
if _, ok := s.staged.GetRelay(); ok {
return
}
// TODO: Random selection? Something else?
for _, peer := range s.staged.Peers {
if peer.Up && peer.Direct && peer.Relay {
s.staged.RelayIP = peer.IP
return
}
}
}
// ----------------------------------------------------------------------------
type peerSuper struct {
messages chan any
state peerState
pingTimer *time.Ticker
}
func newPeerSuper(state *peerData, pingTimer *time.Ticker) *peerSuper {
return &peerSuper{
messages: make(chan any, 8),
state: initPeerState(state, nil),
pingTimer: pingTimer,
}
}
func (s *peerSuper) HandleControlMsg(msg any) {
select {
case s.messages <- msg:
default:
}
}
func (s *peerSuper) Run() {
for {
select {
case <-s.pingTimer.C:
s.state = s.state.OnMsg(pingTimerMsg{})
case raw := <-s.messages:
s.state = s.state.OnMsg(raw)
}
}
}

86
peer/pubaddrs.go Normal file
View File

@ -0,0 +1,86 @@
package peer
import (
"net/netip"
"sort"
"sync"
"time"
)
type pubAddrStore struct {
lock sync.Mutex
localPub bool
localAddr netip.AddrPort
lastSeen map[netip.AddrPort]time.Time
addrList []netip.AddrPort
}
func newPubAddrStore(localAddr netip.AddrPort) *pubAddrStore {
return &pubAddrStore{
localPub: localAddr.IsValid(),
localAddr: localAddr,
lastSeen: map[netip.AddrPort]time.Time{},
addrList: make([]netip.AddrPort, 0, 32),
}
}
func (store *pubAddrStore) Store(addr netip.AddrPort) {
if store.localPub {
return
}
if !addr.IsValid() {
return
}
if addr.Addr().IsPrivate() {
return
}
store.lock.Lock()
defer store.lock.Unlock()
if _, exists := store.lastSeen[addr]; !exists {
store.addrList = append(store.addrList, addr)
}
store.lastSeen[addr] = time.Now()
store.sort()
}
func (store *pubAddrStore) Get() (addrs [8]netip.AddrPort) {
store.lock.Lock()
defer store.lock.Unlock()
store.clean()
if store.localPub {
addrs[0] = store.localAddr
return
}
copy(addrs[:], store.addrList)
return
}
func (store *pubAddrStore) clean() {
if store.localPub {
return
}
for ip, lastSeen := range store.lastSeen {
if time.Since(lastSeen) > timeoutInterval {
delete(store.lastSeen, ip)
}
}
store.addrList = store.addrList[:0]
for ip := range store.lastSeen {
store.addrList = append(store.addrList, ip)
}
store.sort()
}
func (store *pubAddrStore) sort() {
sort.Slice(store.addrList, func(i, j int) bool {
return store.lastSeen[store.addrList[j]].Before(store.lastSeen[store.addrList[i]])
})
}

View File

@ -1,4 +1,4 @@
package node
package peer
import (
"net/netip"
@ -7,7 +7,7 @@ import (
)
func TestPubAddrStore(t *testing.T) {
s := newPubAddrStore()
s := newPubAddrStore(netip.AddrPort{})
l := []netip.AddrPort{
netip.AddrPortFrom(netip.AddrFrom4([4]byte{0, 1, 2, 3}), 20),
@ -20,7 +20,7 @@ func TestPubAddrStore(t *testing.T) {
time.Sleep(time.Millisecond)
}
s.Clean()
s.clean()
l2 := s.Get()
if l2[0] != l[2] || l2[1] != l[1] || l2[2] != l[0] {

138
peer/routingtable.go Normal file
View File

@ -0,0 +1,138 @@
package peer
import (
"net/netip"
"sync/atomic"
"time"
)
// TODO: Remove
func newRemotePeer(ip byte) *remotePeer {
counter := uint64(time.Now().Unix()<<30 + 1)
return &remotePeer{
IP: ip,
counter: &counter,
dupCheck: newDupCheck(0),
}
}
// ----------------------------------------------------------------------------
type remotePeer struct {
localIP byte
IP byte // VPN IP of peer (last byte).
Up bool // True if data can be sent on the peer.
Relay bool // True if the peer is a relay.
Direct bool // True if this is a direct connection.
DirectAddr netip.AddrPort // Remote address if directly connected.
PubSignKey []byte
ControlCipher *controlCipher
DataCipher *dataCipher
counter *uint64 // For sending to. Atomic access only.
dupCheck *dupCheck // For receiving from. Not safe for concurrent use.
}
func (p remotePeer) EncryptDataPacket(destIP byte, data, out []byte) []byte {
h := header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: destIP,
}
return p.DataCipher.Encrypt(h, data, out)
}
// Decrypts and de-dups incoming data packets.
func (p remotePeer) DecryptDataPacket(h header, enc, out []byte) ([]byte, error) {
dec, ok := p.DataCipher.Decrypt(enc, out)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
return dec, nil
}
// Peer must have a ControlCipher.
func (p remotePeer) EncryptControlPacket(pkt marshaller, tmp, out []byte) []byte {
tmp = pkt.Marshal(tmp)
h := header{
StreamID: controlStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: p.IP,
}
return p.ControlCipher.Encrypt(h, tmp, out)
}
// Returns a controlMsg[PacketType]. Peer must have a non-nil ControlCipher.
//
// This function also drops packets with duplicate sequence numbers.
func (p remotePeer) DecryptControlPacket(fromAddr netip.AddrPort, h header, enc, tmp []byte) (any, error) {
out, ok := p.ControlCipher.Decrypt(enc, tmp)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
msg, err := parseControlMsg(h.SourceIP, fromAddr, out)
if err != nil {
return nil, err
}
return msg, nil
}
// ----------------------------------------------------------------------------
type routingTable struct {
// The LocalIP is the configured IP address of the local peer on the VPN.
//
// This value is constant.
LocalIP byte
// The LocalAddr is the configured local public address of the peer on the
// internet. If LocalAddr.IsValid(), then the local peer has a public
// address.
//
// This value is constant.
LocalAddr netip.AddrPort
// The remote peer configurations. These are updated by
Peers [256]remotePeer
// The current relay's VPN IP address, or zero if no relay is available.
RelayIP byte
}
func newRoutingTable(localIP byte, localAddr netip.AddrPort) routingTable {
rt := routingTable{
LocalIP: localIP,
LocalAddr: localAddr,
}
for i := range rt.Peers {
counter := uint64(time.Now().Unix()<<30 + 1)
rt.Peers[i] = remotePeer{
localIP: localIP,
IP: byte(i),
counter: &counter,
dupCheck: newDupCheck(0),
}
}
return rt
}
func (rt *routingTable) GetRelay() (remotePeer, bool) {
relay := rt.Peers[rt.RelayIP]
return relay, relay.Up && relay.Direct
}

169
peer/routingtable_test.go Normal file
View File

@ -0,0 +1,169 @@
package peer
import (
"bytes"
"reflect"
"testing"
)
func TestRemotePeer_DecryptDataPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
dec, err := peer1.DecryptDataPacket(h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(orig, dec) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptDataPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
for range 2048 {
_, err := peer1.DecryptDataPacket(h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(enc)
}
}
}
func TestRemotePeer_DecryptDataPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
dec, ok := ctrlMsg.(controlMsg[packetProbe])
if !ok {
t.Fatal(ctrlMsg)
}
if dec.SrcIP != 1 || dec.SrcAddr != p1.RT.Load().LocalAddr {
t.Fatal(dec)
}
if !reflect.DeepEqual(dec.Packet, orig) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptControlPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
for range 2048 {
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(ctrlMsg)
}
}
}
func TestRemotePeer_DecryptControlPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket_unknownPacketType(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := UnknownControlPacket{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}

162
peer/state-client.go Normal file
View File

@ -0,0 +1,162 @@
package peer
import (
"net/netip"
"time"
)
type sentProbe struct {
SentAt time.Time
Addr netip.AddrPort
}
type stateClient struct {
*peerData
lastSeen time.Time
syn packetSyn
probes map[uint64]sentProbe
}
func enterStateClient(data *peerData) peerState {
ip, ipValid := netip.AddrFromSlice(data.peer.PublicIP)
data.staged.Relay = data.peer.Relay && ipValid
data.staged.Direct = ipValid
data.staged.DirectAddr = netip.AddrPortFrom(ip, data.peer.Port)
data.publish(data.staged)
state := &stateClient{
peerData: data,
lastSeen: time.Now(),
syn: packetSyn{
TraceID: newTraceID(),
SharedKey: data.staged.DataCipher.Key(),
Direct: data.staged.Direct,
PossibleAddrs: data.pubAddrs.Get(),
},
probes: map[uint64]sentProbe{},
}
state.Send(state.staged, state.syn)
data.pingTimer.Reset(pingInterval)
state.logf("==> Client")
return state
}
func (s *stateClient) logf(str string, args ...any) {
s.peerData.logf("CLNT | "+str, args...)
}
func (s *stateClient) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetAck]:
s.onAck(msg)
case controlMsg[packetProbe]:
return s.onProbe(msg)
case controlMsg[packetLocalDiscovery]:
s.onLocalDiscovery(msg)
case pingTimerMsg:
return s.onPingTimer()
default:
s.logf("Ignoring message: %v", raw)
}
return s
}
func (s *stateClient) onAck(msg controlMsg[packetAck]) {
if msg.Packet.TraceID != s.syn.TraceID {
return
}
s.lastSeen = time.Now()
if !s.staged.Up {
s.staged.Up = true
s.publish(s.staged)
s.logf("Got ACK.")
}
if s.staged.Direct {
s.pubAddrs.Store(msg.Packet.ToAddr)
return
}
// Relayed below.
s.cleanProbes()
for _, addr := range msg.Packet.PossibleAddrs {
if !addr.IsValid() {
break
}
s.sendProbeTo(addr)
}
}
func (s *stateClient) onPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval {
if s.staged.Up {
s.logf("Timeout.")
}
return initPeerState(s.peerData, s.peer)
}
s.Send(s.staged, s.syn)
return s
}
func (s *stateClient) onProbe(msg controlMsg[packetProbe]) peerState {
if s.staged.Direct {
return s
}
s.cleanProbes()
sent, ok := s.probes[msg.Packet.TraceID]
if !ok {
return s
}
s.staged.Direct = true
s.staged.DirectAddr = sent.Addr
s.publish(s.staged)
s.syn.TraceID = newTraceID()
s.syn.Direct = true
s.Send(s.staged, s.syn)
s.logf("Successful probe to %v.", sent.Addr)
return s
}
func (s *stateClient) onLocalDiscovery(msg controlMsg[packetLocalDiscovery]) {
if s.staged.Direct {
return
}
// The source port will be the multicast port, so we'll have to
// construct the correct address using the peer's listed port.
addr := netip.AddrPortFrom(msg.SrcAddr.Addr(), s.peer.Port)
s.sendProbeTo(addr)
}
func (s *stateClient) cleanProbes() {
for key, sent := range s.probes {
if time.Since(sent.SentAt) > pingInterval {
delete(s.probes, key)
}
}
}
func (s *stateClient) sendProbeTo(addr netip.AddrPort) {
probe := packetProbe{TraceID: newTraceID()}
s.probes[probe.TraceID] = sentProbe{
SentAt: time.Now(),
Addr: addr,
}
s.logf("Probing %v...", addr)
s.SendTo(probe, addr)
}

193
peer/state-client_test.go Normal file
View File

@ -0,0 +1,193 @@
package peer
import (
"testing"
"time"
)
func TestStateClient_peerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestStateClient_initialPackets(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, len(h.Sent), 2)
assertType[packetInit](t, h.Sent[0].Packet)
assertType[packetSyn](t, h.Sent[1].Packet)
}
func TestStateClient_onAck_incorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: newTraceID()},
}
h.OnAck(ack)
// Nothing should have happened.
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onAck_direct_downToUp(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, len(h.Sent), 2)
syn := assertType[packetSyn](t, h.Sent[1].Packet)
h.Sent = h.Sent[:0]
assertEqual(t, h.Published.Up, false)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.OnAck(ack)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onAck_relayed_sendsProbes(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, len(h.Sent), 2)
syn := assertType[packetSyn](t, h.Sent[1].Packet)
h.Sent = h.Sent[:0]
assertEqual(t, h.Published.Up, false)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 2, 3, 4, 100)
ack.Packet.PossibleAddrs[1] = addrPort4(2, 3, 4, 5, 200)
h.OnAck(ack)
assertEqual(t, len(h.Sent), 2)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, ack.Packet.PossibleAddrs[0])
assertType[packetProbe](t, h.Sent[1].Packet)
assertEqual(t, h.Sent[1].Peer.DirectAddr, ack.Packet.PossibleAddrs[1])
}
func TestStateClient_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
h.OnPingTimer()
assertEqual(t, len(h.Sent), 1)
assertType[*stateClient](t, h.State)
assertType[packetSyn](t, h.Sent[0].Packet)
}
func TestStateClient_onPing_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
state := assertType[*stateClient](t, h.State)
state.lastSeen = time.Now().Add(-2 * timeoutInterval)
state.staged.Up = true
h.OnPingTimer()
newState := assertType[*stateClientInit](t, h.State)
assertEqual(t, newState.staged.Up, false)
assertEqual(t, len(h.Sent), 1)
assertType[packetInit](t, h.Sent[0].Packet)
}
func TestStateClient_onProbe_direct(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
probe := controlMsg[packetProbe]{
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.OnProbe(probe)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onProbe_noMatch(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
probe := controlMsg[packetProbe]{
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.OnProbe(probe)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onProbe_directUpgrade(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
state := assertType[*stateClient](t, h.State)
traceID := newTraceID()
state.probes[traceID] = sentProbe{
SentAt: time.Now(),
Addr: addrPort4(1, 2, 3, 4, 500),
}
probe := controlMsg[packetProbe]{
Packet: packetProbe{TraceID: traceID},
}
assertEqual(t, h.Published.Direct, false)
h.Sent = h.Sent[:0]
h.OnProbe(probe)
assertEqual(t, h.Published.Direct, true)
assertEqual(t, len(h.Sent), 1)
assertType[packetSyn](t, h.Sent[0].Packet)
}
func TestStateClient_onLocalDiscovery_direct(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
pkt := controlMsg[packetLocalDiscovery]{
Packet: packetLocalDiscovery{},
}
h.OnLocalDiscovery(pkt)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onLocalDiscovery_relayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
pkt := controlMsg[packetLocalDiscovery]{
SrcAddr: addrPort4(1, 2, 3, 4, 500),
Packet: packetLocalDiscovery{},
}
h.OnLocalDiscovery(pkt)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 1)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, addrPort4(1, 2, 3, 4, 456))
}

95
peer/state-clientinit.go Normal file
View File

@ -0,0 +1,95 @@
package peer
import (
"net/netip"
"time"
)
type stateClientInit struct {
*peerData
startedAt time.Time
traceID uint64
}
func enterStateClientInit(data *peerData) peerState {
ip, ipValid := netip.AddrFromSlice(data.peer.PublicIP)
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = ipValid
data.staged.DirectAddr = netip.AddrPortFrom(ip, data.peer.Port)
data.staged.PubSignKey = data.peer.PubSignKey
data.staged.ControlCipher = newControlCipher(data.privKey, data.peer.PubKey)
data.staged.DataCipher = newDataCipher()
data.publish(data.staged)
state := &stateClientInit{
peerData: data,
startedAt: time.Now(),
traceID: newTraceID(),
}
state.sendInit()
data.pingTimer.Reset(pingInterval)
state.logf("==> ClientInit")
return state
}
func (s *stateClientInit) logf(str string, args ...any) {
s.peerData.logf("INIT | "+str, args...)
}
func (s *stateClientInit) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
return s.onInit(msg)
case controlMsg[packetSyn]:
s.logf("Unexpected SYN")
return s
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
return s
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
return s.onPing()
default:
s.logf("Ignoring message: %#v", raw)
return s
}
}
func (s *stateClientInit) onInit(msg controlMsg[packetInit]) peerState {
if msg.Packet.TraceID != s.traceID {
s.logf("Invalid trace ID on INIT.")
return s
}
s.logf("Got INIT version %d.", msg.Packet.Version)
return enterStateClient(s.peerData)
}
func (s *stateClientInit) onPing() peerState {
if time.Since(s.startedAt) > timeoutInterval {
s.logf("Init timeout. Assuming version 1.")
return enterStateClient(s.peerData)
}
s.sendInit()
return s
}
func (s *stateClientInit) sendInit() {
s.traceID = newTraceID()
init := packetInit{
TraceID: s.traceID,
Direct: s.staged.Direct,
Version: version,
}
s.Send(s.staged, init)
}

View File

@ -0,0 +1,83 @@
package peer
import (
"testing"
"time"
)
func TestPeerState_ClientInit_initWithIncorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
init := assertType[packetInit](t, h.Sent[0].Packet)
init.TraceID = newTraceID()
h.OnInit(controlMsg[packetInit]{Packet: init})
assertType[*stateClientInit](t, h.State)
}
func TestPeerState_ClientInit_init(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{Packet: init})
assertType[*stateClient](t, h.State)
}
func TestPeerState_ClientInit_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
h.Sent = h.Sent[:0]
for range 3 {
h.OnPingTimer()
}
assertEqual(t, len(h.Sent), 3)
for i := range h.Sent {
assertType[packetInit](t, h.Sent[i].Packet)
}
}
func TestPeerState_ClientInit_onPingTimeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
state := assertType[*stateClientInit](t, h.State)
state.startedAt = time.Now().Add(-2 * timeoutInterval)
h.OnPingTimer()
// Should have moved into the client state due to timeout.
assertType[*stateClient](t, h.State)
}
func TestPeerState_ClientInit_onPeerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
h.PeerUpdate(nil)
// Should have moved into the client state due to timeout.
assertType[*stateDisconnected](t, h.State)
}
func TestPeerState_ClientInit_ignoreMessage(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
h.OnProbe(controlMsg[packetProbe]{})
// Shouldn't do anything.
assertType[*stateClientInit](t, h.State)
}

View File

@ -0,0 +1,50 @@
package peer
import "net/netip"
type stateDisconnected struct {
*peerData
}
func enterStateDisconnected(data *peerData) peerState {
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = false
data.staged.DirectAddr = netip.AddrPort{}
data.staged.PubSignKey = nil
data.staged.ControlCipher = nil
data.staged.DataCipher = nil
data.publish(data.staged)
data.pingTimer.Stop()
return &stateDisconnected{data}
}
func (s *stateDisconnected) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
s.logf("Unexpected INIT")
return s
case controlMsg[packetSyn]:
s.logf("Unexpected SYN")
return s
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
s.logf("Unexpected probe")
return s
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
s.logf("Unexpected ping")
return s
default:
s.logf("Ignoring message: %#v", raw)
return s
}
}

136
peer/state-server.go Normal file
View File

@ -0,0 +1,136 @@
package peer
import (
"net/netip"
"time"
)
type stateServer struct {
*peerData
lastSeen time.Time
synTraceID uint64 // Last syn trace ID.
}
func enterStateServer(data *peerData) peerState {
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = false
data.staged.DirectAddr = netip.AddrPort{}
data.staged.PubSignKey = data.peer.PubSignKey
data.staged.ControlCipher = newControlCipher(data.privKey, data.peer.PubKey)
data.staged.DataCipher = nil
data.publish(data.staged)
data.pingTimer.Reset(pingInterval)
state := &stateServer{
peerData: data,
lastSeen: time.Now(),
}
state.logf("==> Server")
return state
}
func (s *stateServer) logf(str string, args ...any) {
s.peerData.logf("SRVR | "+str, args...)
}
func (s *stateServer) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
return s.onInit(msg)
case controlMsg[packetSyn]:
return s.onSyn(msg)
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
return s.onProbe(msg)
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
return s.onPingTimer()
default:
s.logf("Unexpected message: %#v", raw)
return s
}
}
func (s *stateServer) onInit(msg controlMsg[packetInit]) peerState {
s.staged.Up = false
s.staged.Direct = msg.Packet.Direct
s.staged.DirectAddr = msg.SrcAddr
s.publish(s.staged)
init := packetInit{
TraceID: msg.Packet.TraceID,
Direct: s.staged.Direct,
Version: version,
}
s.Send(s.staged, init)
return s
}
func (s *stateServer) onSyn(msg controlMsg[packetSyn]) peerState {
s.lastSeen = time.Now()
p := msg.Packet
// Before we can respond to this packet, we need to make sure the
// route is setup properly.
//
// The client will update the syn's TraceID whenever there's a change.
// The server will follow the client's request.
if p.TraceID != s.synTraceID || !s.staged.Up {
s.synTraceID = p.TraceID
s.staged.Up = true
s.staged.Direct = p.Direct
s.staged.DataCipher = newDataCipherFromKey(p.SharedKey)
s.staged.DirectAddr = msg.SrcAddr
s.publish(s.staged)
s.logf("Got SYN.")
}
// Always respond.
s.Send(s.staged, packetAck{
TraceID: p.TraceID,
ToAddr: s.staged.DirectAddr,
PossibleAddrs: s.pubAddrs.Get(),
})
if p.Direct {
return s
}
// Send probes if not a direct connection.
for _, addr := range msg.Packet.PossibleAddrs {
if !addr.IsValid() {
break
}
s.logf("Probing %v...", addr)
s.SendTo(packetProbe{TraceID: newTraceID()}, addr)
}
return s
}
func (s *stateServer) onProbe(msg controlMsg[packetProbe]) peerState {
if msg.SrcAddr.IsValid() {
s.logf("Probe response %v...", msg.SrcAddr)
s.SendTo(packetProbe{TraceID: msg.Packet.TraceID}, msg.SrcAddr)
}
return s
}
func (s *stateServer) onPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval && s.staged.Up {
s.staged.Up = false
s.publish(s.staged)
s.logf("Timeout.")
}
return s
}

164
peer/state-server_test.go Normal file
View File

@ -0,0 +1,164 @@
package peer
import (
"testing"
"time"
)
func TestStateServer_peerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestStateServer_onInit(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
msg := controlMsg[packetInit]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetInit{
TraceID: newTraceID(),
Direct: true,
Version: 4,
},
}
h.OnInit(msg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetInit](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
assertEqual(t, resp.Version, version)
}
func TestStateServer_onSynDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
msg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetSyn{
TraceID: newTraceID(),
Direct: true,
},
}
msg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 1000)
msg.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 2000)
h.OnSyn(msg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
}
func TestStateServer_onSynRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetSyn{
TraceID: newTraceID(),
},
}
msg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 1000)
msg.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 2000)
h.OnSyn(msg)
assertEqual(t, len(h.Sent), 3)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
for i, pkt := range h.Sent[1:] {
assertEqual(t, pkt.Peer.DirectAddr, msg.Packet.PossibleAddrs[i])
assertType[packetProbe](t, pkt.Packet)
}
}
func TestStateServer_onProbe(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetProbe]{
SrcIP: 3,
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.Sent = h.Sent[:0]
h.OnProbe(msg)
assertEqual(t, len(h.Sent), 0)
}
func TestStateServer_onProbe_valid(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetProbe]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 100),
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.Sent = h.Sent[:0]
h.OnProbe(msg)
assertEqual(t, len(h.Sent), 1)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
}
func TestStateServer_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
h.Sent = h.Sent[:0]
h.OnPingTimer()
assertEqual(t, len(h.Sent), 0)
assertType[*stateServer](t, h.State)
}
func TestStateServer_onPing_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
h.Sent = h.Sent[:0]
state := assertType[*stateServer](t, h.State)
state.staged.Up = true
state.lastSeen = time.Now().Add(-2 * timeoutInterval)
h.OnPingTimer()
state = assertType[*stateServer](t, h.State)
assertEqual(t, len(h.Sent), 0)
assertEqual(t, state.staged.Up, false)
}
func TestStateServer_onLocalDiscovery(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetLocalDiscovery]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 100),
}
h.OnLocalDiscovery(msg)
assertType[*stateServer](t, h.State)
}
func TestStateServer_onAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetAck]{}
h.OnAck(msg)
assertType[*stateServer](t, h.State)
}

151
peer/state-util_test.go Normal file
View File

@ -0,0 +1,151 @@
package peer
import (
"net/netip"
"testing"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
type PeerStateControlMsg struct {
Peer remotePeer
Packet any
}
type PeerStateTestHarness struct {
data *peerData
State peerState
Published remotePeer
Sent []PeerStateControlMsg
}
func NewPeerStateTestHarness() *PeerStateTestHarness {
h := &PeerStateTestHarness{}
keys := generateKeys()
state := &peerData{
publish: func(rp remotePeer) {
h.Published = rp
},
sendControlPacket: func(rp remotePeer, pkt marshaller) {
h.Sent = append(h.Sent, PeerStateControlMsg{rp, pkt})
},
pingTimer: time.NewTicker(pingInterval),
localIP: 2,
remoteIP: 3,
privKey: keys.PrivKey,
pubAddrs: newPubAddrStore(netip.AddrPort{}),
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
h.data = state
h.State = enterStateDisconnected(state)
return h
}
func (h *PeerStateTestHarness) PeerUpdate(p *m.Peer) {
h.State = h.State.OnMsg(peerUpdateMsg{p})
}
func (h *PeerStateTestHarness) OnInit(msg controlMsg[packetInit]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnSyn(msg controlMsg[packetSyn]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnAck(msg controlMsg[packetAck]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnProbe(msg controlMsg[packetProbe]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnLocalDiscovery(msg controlMsg[packetLocalDiscovery]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnPingTimer() {
h.State = h.State.OnMsg(pingTimerMsg{})
}
func (h *PeerStateTestHarness) ConfigServer_Public(t *testing.T) *stateServer {
keys := generateKeys()
state := h.State.(*stateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 1, 1, 3},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigServer_Relayed(t *testing.T) *stateServer {
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientInit(t *testing.T) *stateClientInit {
// Remote IP should be less than local IP.
h.data.localIP = 4
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 2, 3, 4},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateClientInit](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientDirect(t *testing.T) *stateClient {
h.ConfigClientInit(t)
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{
Packet: init,
})
return assertType[*stateClient](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientRelayed(t *testing.T) *stateClient {
h.ConfigClientInit(t)
state := assertType[*stateClientInit](t, h.State)
state.peer.PublicIP = nil // Force relay.
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{
Packet: init,
})
return assertType[*stateClient](t, h.State)
}

109
peer/statedata.go Normal file
View File

@ -0,0 +1,109 @@
package peer
import (
"fmt"
"log"
"net/netip"
"strings"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
type peerState interface {
OnMsg(raw any) peerState
}
// ----------------------------------------------------------------------------
type peerData struct {
// Output.
publish func(remotePeer)
sendControlPacket func(remotePeer, marshaller)
pingTimer *time.Ticker
// Immutable data.
localIP byte
remoteIP byte
privKey []byte
localAddr netip.AddrPort // If valid, then local peer is publicly accessible.
pubAddrs *pubAddrStore
// The purpose of this state machine is to manage the RemotePeer object,
// publishing it as necessary.
staged remotePeer // Local copy of shared data. See publish().
// Mutable peer data.
peer *m.Peer
// We rate limit per remote endpoint because if we don't we tend to lose
// packets.
limiter *ratelimiter.Limiter
}
func (s *peerData) logf(format string, args ...any) {
b := strings.Builder{}
name := ""
if s.peer != nil {
name = s.peer.Name
}
b.WriteString(fmt.Sprintf("%03d", s.remoteIP))
b.WriteString(fmt.Sprintf("%30s: ", name))
if s.staged.Direct {
b.WriteString("DIRECT | ")
} else {
b.WriteString("RELAYED | ")
}
if s.staged.Up {
b.WriteString("UP | ")
} else {
b.WriteString("DOWN | ")
}
log.Printf(b.String()+format, args...)
}
// ----------------------------------------------------------------------------
func (s *peerData) SendTo(pkt marshaller, addr netip.AddrPort) {
if !addr.IsValid() {
return
}
route := s.staged
route.Direct = true
route.DirectAddr = addr
s.Send(route, pkt)
}
func (s *peerData) Send(peer remotePeer, pkt marshaller) {
if err := s.limiter.Limit(); err != nil {
s.logf("Rate limited.")
return
}
s.sendControlPacket(peer, pkt)
}
func initPeerState(data *peerData, peer *m.Peer) peerState {
data.peer = peer
if peer == nil {
return enterStateDisconnected(data)
}
if _, isValid := netip.AddrFromSlice(peer.PublicIP); isValid {
if data.localAddr.IsValid() && data.localIP < data.remoteIP {
return enterStateServer(data)
}
return enterStateClientInit(data)
}
if data.localAddr.IsValid() || data.localIP < data.remoteIP {
return enterStateServer(data)
}
return enterStateClientInit(data)
}

26
peer/util_test.go Normal file
View File

@ -0,0 +1,26 @@
package peer
import (
"net/netip"
"testing"
)
func addrPort4(a, b, c, d byte, port uint16) netip.AddrPort {
return netip.AddrPortFrom(netip.AddrFrom4([4]byte{a, b, c, d}), port)
}
func assertType[T any](t *testing.T, obj any) T {
t.Helper()
x, ok := obj.(T)
if !ok {
t.Fatalf("invalid type: %#v", obj)
}
return x
}
func assertEqual[T comparable](t *testing.T, a, b T) {
t.Helper()
if a != b {
t.Fatal(a, " != ", b)
}
}