WIP: Cleanup

This commit is contained in:
jdl 2025-08-26 16:57:46 +02:00
parent 31c48fbafd
commit 302d27692b
22 changed files with 29 additions and 2199 deletions

View File

@ -7,7 +7,7 @@
* (startupCount << 48) + counter
* pass startup count to newRoutingTable function (or global?)
* write / increment on startup
* Use startup counter for trace IDs as well.
* Use startup counter for trace IDs as well (see Globals)
* Double buffering in IFReader and ConnReader ?
* Clean up state machine - one class w/
* type stateFunc func(msg any) stateFunc

View File

@ -44,7 +44,3 @@ func (r *ConnReader) handleNextPacket() {
r.RemotePeers[h.SourceIP].Load().HandlePacket(h, remoteAddr, buf)
}
func (r *ConnReader) logf(format string, args ...any) {
log.Printf("[ConnReader] "+format, args...)
}

View File

@ -1,191 +0,0 @@
package peer
import (
"net/netip"
"reflect"
"testing"
)
func newRoutePairForTesting() (*remotePeer, *remotePeer) {
keys1 := generateKeys()
keys2 := generateKeys()
r1 := newRemotePeer(1)
r1.PubSignKey = keys1.PubSignKey
r1.ControlCipher = newControlCipher(keys1.PrivKey, keys2.PubKey)
r1.DataCipher = newDataCipher()
r2 := newRemotePeer(2)
r2.PubSignKey = keys2.PubSignKey
r2.ControlCipher = newControlCipher(keys2.PrivKey, keys1.PubKey)
r2.DataCipher = r1.DataCipher
return r1, r2
}
func TestDecryptControlPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := r1.EncryptControlPacket(in, tmp, out)
h := parseHeader(enc)
iMsg, err := r2.DecryptControlPacket(netip.AddrPort{}, h, enc, tmp)
if err != nil {
t.Fatal(err)
}
msg, ok := iMsg.(controlMsg[packetSyn])
if !ok {
t.Fatal(ok)
}
if !reflect.DeepEqual(msg.Packet, in) {
t.Fatal(msg)
}
}
/*
func TestDecryptControlPacket_decryptionFailed(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
for i := range enc {
x := bytes.Clone(enc)
x[i]++
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, x, tmp)
if !errors.Is(err, errDecryptionFailed) {
t.Fatal(i, err)
}
}
}
func TestDecryptControlPacket_duplicate(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := packetSyn{
TraceID: newTraceID(),
SharedKey: r1.DataCipher.Key(),
Direct: true,
}
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
if _, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp); err != nil {
t.Fatal(err)
}
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp)
if !errors.Is(err, errDuplicateSeqNum) {
t.Fatal(err)
}
}
func TestDecryptControlPacket_invalidPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
tmp = make([]byte, bufferSize)
out = make([]byte, bufferSize)
)
in := testPacket("hello!")
enc := encryptControlPacket(r1.IP, r2, in, tmp, out)
h := parseHeader(enc)
_, err := decryptControlPacket(r2, netip.AddrPort{}, h, enc, tmp)
if !errors.Is(err, errUnknownPacketType) {
t.Fatal(err)
}
}
func TestDecryptDataPacket(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, out)
h := parseHeader(enc)
out, err := decryptDataPacket(r1, h, bytes.Clone(enc), out)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(data, out) {
t.Fatal(data, out)
}
}
func TestDecryptDataPacket_incorrectCipher(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, bytes.Clone(out))
h := parseHeader(enc)
r1.DataCipher = newDataCipher()
_, err := decryptDataPacket(r1, h, enc, bytes.Clone(out))
if !errors.Is(err, errDecryptionFailed) {
t.Fatal(err)
}
}
func TestDecryptDataPacket_duplicate(t *testing.T) {
var (
r1, r2 = newRoutePairForTesting()
out = make([]byte, bufferSize)
data = make([]byte, 1024)
)
rand.Read(data)
enc := encryptDataPacket(r1.IP, r2.IP, r2, data, bytes.Clone(out))
h := parseHeader(enc)
_, err := decryptDataPacket(r1, h, enc, bytes.Clone(out))
if err != nil {
t.Fatal(err)
}
_, err = decryptDataPacket(r1, h, enc, bytes.Clone(out))
if !errors.Is(err, errDuplicateSeqNum) {
t.Fatal(err)
}
}
*/

View File

@ -3,8 +3,6 @@ package peer
import "errors"
var (
errDecryptionFailed = errors.New("decryption failed")
errDuplicateSeqNum = errors.New("duplicate sequence number")
errMalformedPacket = errors.New("malformed packet")
errUnknownPacketType = errors.New("unknown packet type")
)

View File

@ -31,10 +31,6 @@ var multicastAddr = net.UDPAddrFromAddrPort(netip.AddrPortFrom(
netip.AddrFrom4([4]byte{224, 0, 0, 157}),
4560))
type marshaller interface {
Marshal([]byte) []byte
}
// ----------------------------------------------------------------------------
type Globals struct {
@ -62,6 +58,7 @@ type Globals struct {
IFace io.ReadWriteCloser
// For trace ID.
NewTraceID func() uint64
}
func NewGlobals(
@ -90,6 +87,12 @@ func NewGlobals(
g.IFace = iface
// TODO: Initialize w/ startup count.
traceID := uint64(time.Now().Unix()<<30) + 1
g.NewTraceID = func() uint64 {
return atomic.AddUint64(&traceID, 1)
}
for i := range g.RemotePeers {
g.RemotePeers[i] = &atomic.Pointer[Remote]{}
}

View File

@ -2,18 +2,9 @@ package peer
import (
"net/netip"
"sync/atomic"
"time"
"unsafe"
)
// TODO: Initialize w/ startup counter.
var traceIDCounter uint64 = uint64(time.Now().Unix()<<30) + 1
func newTraceID() uint64 {
return atomic.AddUint64(&traceIDCounter, 1)
}
// ----------------------------------------------------------------------------
type binWriter struct {

View File

@ -55,7 +55,6 @@ func newPeerMain(args mainArgs) *peerMain {
localPeer := state.Peers[config.LocalPeerIP]
log.Printf("XXXXX %v %v", config.LocalPeerIP, localPeer)
myAddr, err := net.ResolveUDPAddr("udp", fmt.Sprintf(":%d", localPeer.Port))
if err != nil {
log.Fatalf("Failed to resolve UDP address: %v", err)

View File

@ -1,114 +0,0 @@
package peer
import (
"bytes"
"crypto/rand"
mrand "math/rand"
"net/netip"
"sync/atomic"
)
// A test peer.
type P struct {
cryptoKeys
RT *atomic.Pointer[routingTable]
Conn *TestUDPConn
IFace *TestIFace
ConnReader *ConnReader
IFReader *IFReader
}
func NewPeerForTesting(n *TestNetwork, ip byte, addr netip.AddrPort) P {
p := P{
cryptoKeys: generateKeys(),
RT: &atomic.Pointer[routingTable]{},
IFace: NewTestIFace(),
}
rt := newRoutingTable(ip, addr)
p.RT.Store(&rt)
p.Conn = n.NewUDPConn(addr)
//p.ConnWriter = NewConnWriter(p.Conn.WriteToUDPAddrPort, p.RT)
return p
}
func ConnectPeers(p1, p2 *P) {
rt1 := p1.RT.Load()
rt2 := p2.RT.Load()
ip1 := rt1.LocalIP
ip2 := rt2.LocalIP
rt1.Peers[ip2].Up = true
rt1.Peers[ip2].Direct = true
rt1.Peers[ip2].Relay = true
rt1.Peers[ip2].DirectAddr = rt2.LocalAddr
rt1.Peers[ip2].PubSignKey = p2.PubSignKey
rt1.Peers[ip2].ControlCipher = newControlCipher(p1.PrivKey, p2.PubKey)
rt1.Peers[ip2].DataCipher = newDataCipher()
rt2.Peers[ip1].Up = true
rt2.Peers[ip1].Direct = true
rt2.Peers[ip1].Relay = true
rt2.Peers[ip1].DirectAddr = rt1.LocalAddr
rt2.Peers[ip1].PubSignKey = p1.PubSignKey
rt2.Peers[ip1].ControlCipher = newControlCipher(p2.PrivKey, p1.PubKey)
rt2.Peers[ip1].DataCipher = rt1.Peers[ip2].DataCipher
}
func NewPeersForTesting() (p1, p2, p3 P) {
n := NewTestNetwork()
p1 = NewPeerForTesting(
n,
1,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 1}), 100))
p2 = NewPeerForTesting(
n,
2,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 2}), 200))
p3 = NewPeerForTesting(
n,
3,
netip.AddrPortFrom(netip.AddrFrom4([4]byte{1, 1, 1, 3}), 300))
ConnectPeers(&p1, &p2)
ConnectPeers(&p1, &p3)
ConnectPeers(&p2, &p3)
return
}
func RandPacket() []byte {
n := mrand.Intn(1200)
b := make([]byte, n)
rand.Read(b)
return b
}
func ModifyPacket(in []byte) []byte {
x := make([]byte, 1)
for {
rand.Read(x)
out := bytes.Clone(in)
idx := mrand.Intn(len(out))
if out[idx] != x[0] {
out[idx] = x[0]
return out
}
}
}
// ----------------------------------------------------------------------------
type UnknownControlPacket struct {
TraceID uint64
}
func (p UnknownControlPacket) Marshal(buf []byte) []byte {
return newBinWriter(buf).Byte(255).Uint64(p.TraceID).Build()
}

View File

@ -1,371 +0,0 @@
package peer
import (
"testing"
"vppn/m"
)
// ----------------------------------------------------------------------------
func TestPeerState_OnPeerUpdate_nilPeer(t *testing.T) {
h := NewPeerStateTestHarness()
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestPeerState_OnPeerUpdate_publicLocalIsServer(t *testing.T) {
keys := generateKeys()
h := NewPeerStateTestHarness()
state := h.State.(*stateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
assertType[*stateServer](t, h.State)
}
/*
func TestPeerState_OnPeerUpdate_clientDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
}
/*
func TestPeerState_OnPeerUpdate_clientRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
}
/*
func TestStateServer_directSyn(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 1)
ack := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0].IsValid(), false)
assertEqual(t, h.Published.Up, true)
}
func TestStateServer_relayedSyn(t *testing.T) {
h := NewPeerStateTestHarness()
state := h.ConfigServer_Relayed(t)
state.pubAddrs.Store(addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, h.Published.Up, false)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: false,
},
}
synMsg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 3, 300)
synMsg.Packet.PossibleAddrs[1] = addrPort4(2, 2, 2, 3, 300)
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 3)
ack := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, ack.TraceID, synMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.IP, 3)
assertEqual(t, ack.PossibleAddrs[0], addrPort4(4, 5, 6, 7, 1234))
assertEqual(t, ack.PossibleAddrs[1].IsValid(), false)
assertEqual(t, h.Published.Up, true)
assertType[packetProbe](t, h.Sent[1].Packet)
assertType[packetProbe](t, h.Sent[2].Packet)
assertEqual(t, h.Sent[1].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 300))
}
func TestStateServer_onProbe(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
assertEqual(t, h.Published.Up, false)
probeMsg := controlMsg[packetProbe]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetProbe{TraceID: newTraceID()},
}
h.State = h.State.OnMsg(probeMsg)
assertEqual(t, len(h.Sent), 1)
probe := assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, probe.TraceID, probeMsg.Packet.TraceID)
assertEqual(t, h.Sent[0].Peer.DirectAddr, addrPort4(1, 1, 1, 3, 300))
}
func TestStateServer_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
synMsg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 1, 1, 3, 300),
Packet: packetSyn{
TraceID: newTraceID(),
//SentAt: time.Now().UnixMilli(),
//SharedKeyType: 1,
Direct: true,
},
}
h.State = h.State.OnMsg(synMsg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Published.Up, true)
// Ping shouldn't timeout.
h.OnPingTimer()
assertEqual(t, h.Published.Up, true)
// Advance the time, then ping.
state := assertType[*stateServer](t, h.State)
state.lastSeen = time.Now().Add(-timeoutInterval - time.Second)
h.OnPingTimer()
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientDirect_OnAck_incorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID + 1},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
assertType[packetSyn](t, h.Sent[0].Packet)
h.OnPingTimer()
// On ping timer, another syn should be sent. Additionally, we should remain
// in the same state.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientDirect_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*stateClientDirect](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientDirect](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
}
func TestStateClientRelayed_OnPingTimer_noAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
// If we haven't had an ack yet, we won't have addresses to probe. Therefore
// we'll have just one more syn packet sent.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 2)
}
func TestStateClientRelayed_OnPingTimer_withAddrs(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, h.Published.Up, false)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{Packet: packetAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State = h.State.OnMsg(ack)
// Add a local discovery address. Note that the port will be configured port
// and no the one provided here.
h.State = h.State.OnMsg(controlMsg[packetLocalDiscovery]{
SrcIP: 3,
SrcAddr: addrPort4(2, 2, 2, 3, 300),
})
// We should see one SYN and three probe packets.
h.OnPingTimer()
assertEqual(t, len(h.Sent), 5)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[packetProbe](t, h.Sent[2].Packet)
assertType[packetProbe](t, h.Sent[3].Packet)
assertType[packetProbe](t, h.Sent[4].Packet)
assertEqual(t, h.Sent[2].Peer.DirectAddr, addrPort4(1, 1, 1, 1, 300))
assertEqual(t, h.Sent[3].Peer.DirectAddr, addrPort4(1, 1, 1, 2, 300))
assertEqual(t, h.Sent[4].Peer.DirectAddr, addrPort4(2, 2, 2, 3, 456))
}
func TestStateClientRelayed_OnPingTimer_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
// On entering the state, a SYN should have been sent.
assertEqual(t, len(h.Sent), 1)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.State = h.State.OnMsg(ack)
assertEqual(t, h.Published.Up, true)
state := assertType[*stateClientRelayed](t, h.State)
state.lastSeen = time.Now().Add(-(timeoutInterval + time.Second))
h.OnPingTimer()
// On ping timer, we should timeout, causing the client to reset. Another SYN
// will be sent when re-entering the state, but the connection should be down.
assertEqual(t, len(h.Sent), 2)
assertType[packetSyn](t, h.Sent[1].Packet)
assertType[*stateClientRelayed](t, h.State)
assertEqual(t, h.Published.Up, false)
}
func TestStateClientRelayed_OnProbe_unknownAddr(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.OnProbe(controlMsg[packetProbe]{
Packet: packetProbe{TraceID: newTraceID()},
})
assertType[*stateClientRelayed](t, h.State)
}
func TestStateClientRelayed_OnProbe_upgradeDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
syn := assertType[packetSyn](t, h.Sent[0].Packet)
ack := controlMsg[packetAck]{Packet: packetAck{TraceID: syn.TraceID}}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 300)
ack.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 300)
h.State = h.State.OnMsg(ack)
h.OnPingTimer()
probe := assertType[packetProbe](t, h.Sent[2].Packet)
h.OnProbe(controlMsg[packetProbe]{Packet: probe})
assertType[*stateClientDirect](t, h.State)
}
*/

View File

@ -8,8 +8,6 @@ import (
"sync/atomic"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
// ----------------------------------------------------------------------------
@ -40,7 +38,6 @@ type Remote struct {
Globals
RemotePeerIP byte // Immutable.
limiter *ratelimiter.Limiter
dupCheck *dupCheck
sendCounter uint64 // init to startupCount << 48. Atomic access only.
@ -53,10 +50,6 @@ func newRemote(g Globals, remotePeerIP byte) *Remote {
r := &Remote{
Globals: g,
RemotePeerIP: remotePeerIP,
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
dupCheck: newDupCheck(0),
sendCounter: uint64(time.Now().Unix()<<30) + 1,
messages: make(chan any, 8),
@ -88,7 +81,7 @@ func (r *Remote) updateConf(conf remoteConfig) {
func (r *Remote) sendUDP(b []byte, addr netip.AddrPort) {
if _, err := r.SendUDP(b, addr); err != nil {
r.logf("Failed to send URP packet: %v", err)
r.logf("Failed to send UDP packet: %v", err)
}
}
@ -124,15 +117,14 @@ func (r *Remote) SendDataTo(data []byte) {
return
}
if conf.Direct {
r.sendDataDirect(conf, data)
} else {
r.sendDataRelayed(conf, data)
}
}
// Direct:
// sendDataRelayed sends data to the remote via the relay.
func (r *Remote) sendDataRelayed(conf remoteConfig, data []byte) {
if conf.Direct {
r.sendUDP(r.encryptData(conf, conf.Peer.PeerIP, data), conf.DirectAddr)
return
}
// Relayed:
relay := r.RelayHandler.Load()
if relay == nil {
@ -143,11 +135,6 @@ func (r *Remote) sendDataRelayed(conf remoteConfig, data []byte) {
relay.relayData(conf.Peer.PeerIP, r.encryptData(conf, conf.Peer.PeerIP, data))
}
// sendDataDirect sends data to the remote directly.
func (r *Remote) sendDataDirect(conf remoteConfig, data []byte) {
r.sendUDP(r.encryptData(conf, conf.Peer.PeerIP, data), conf.DirectAddr)
}
func (r *Remote) relayData(toIP byte, enc []byte) {
conf := r.conf()
if !conf.Up || !conf.Direct {
@ -158,11 +145,6 @@ func (r *Remote) relayData(toIP byte, enc []byte) {
}
func (r *Remote) sendControl(conf remoteConfig, data []byte) {
if err := r.limiter.Limit(); err != nil {
r.logf("Rate limiter")
return
}
// Direct:
if conf.Direct {

View File

@ -9,6 +9,11 @@ import (
type stateFunc func(msg any) stateFunc
type sentProbe struct {
SentAt time.Time
Addr netip.AddrPort
}
type remoteFSM struct {
*Remote
@ -196,7 +201,7 @@ func (r *remoteFSM) stateServer_onSyn(msg controlMsg[packetSyn]) {
break
}
r.logf("Probing %v...", addr)
r.sendControlToAddr(packetProbe{TraceID: newTraceID()}.Marshal(r.buf), addr)
r.sendControlToAddr(packetProbe{TraceID: r.NewTraceID()}.Marshal(r.buf), addr)
}
}
@ -264,7 +269,7 @@ func (r *remoteFSM) stateClientInit(iMsg any) stateFunc {
func (r *remoteFSM) stateClientInit_sendInit() {
conf := r.conf()
r.traceID = newTraceID()
r.traceID = r.NewTraceID()
init := packetInit{
TraceID: r.traceID,
Direct: conf.Direct,
@ -311,7 +316,7 @@ func (r *remoteFSM) enterClient() stateFunc {
conf := r.conf()
r.probes = make(map[uint64]sentProbe, 8)
r.traceID = newTraceID()
r.traceID = r.NewTraceID()
r.stateClient_sendSyn(conf)
r.pingTimer.Reset(pingInterval)
@ -377,7 +382,7 @@ func (r *remoteFSM) stateClient_cleanProbes() {
}
func (r *remoteFSM) stateClient_sendProbeTo(addr netip.AddrPort) {
probe := packetProbe{TraceID: newTraceID()}
probe := packetProbe{TraceID: r.NewTraceID()}
r.probes[probe.TraceID] = sentProbe{
SentAt: time.Now(),
Addr: addr,
@ -403,7 +408,7 @@ func (r *remoteFSM) stateClient_onProbe(msg controlMsg[packetProbe]) {
conf.DirectAddr = sent.Addr
r.updateConf(conf)
r.traceID = newTraceID()
r.traceID = r.NewTraceID()
r.stateClient_sendSyn(conf)
r.logf("Successful probe to %v.", sent.Addr)
}

View File

@ -1,138 +0,0 @@
package peer
import (
"net/netip"
"sync/atomic"
"time"
)
// TODO: Remove
func newRemotePeer(ip byte) *remotePeer {
counter := uint64(time.Now().Unix()<<30 + 1)
return &remotePeer{
IP: ip,
counter: &counter,
dupCheck: newDupCheck(0),
}
}
// ----------------------------------------------------------------------------
type remotePeer struct {
localIP byte
IP byte // VPN IP of peer (last byte).
Up bool // True if data can be sent on the peer.
Relay bool // True if the peer is a relay.
Direct bool // True if this is a direct connection.
DirectAddr netip.AddrPort // Remote address if directly connected.
PubSignKey []byte
ControlCipher *controlCipher
DataCipher *dataCipher
counter *uint64 // For sending to. Atomic access only.
dupCheck *dupCheck // For receiving from. Not safe for concurrent use.
}
func (p remotePeer) EncryptDataPacket(destIP byte, data, out []byte) []byte {
h := Header{
StreamID: dataStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: destIP,
}
return p.DataCipher.Encrypt(h, data, out)
}
// Decrypts and de-dups incoming data packets.
func (p remotePeer) DecryptDataPacket(h Header, enc, out []byte) ([]byte, error) {
dec, ok := p.DataCipher.Decrypt(enc, out)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
return dec, nil
}
// Peer must have a ControlCipher.
func (p remotePeer) EncryptControlPacket(pkt marshaller, tmp, out []byte) []byte {
tmp = pkt.Marshal(tmp)
h := Header{
StreamID: controlStreamID,
Counter: atomic.AddUint64(p.counter, 1),
SourceIP: p.localIP,
DestIP: p.IP,
}
return p.ControlCipher.Encrypt(h, tmp, out)
}
// Returns a controlMsg[PacketType]. Peer must have a non-nil ControlCipher.
//
// This function also drops packets with duplicate sequence numbers.
func (p remotePeer) DecryptControlPacket(fromAddr netip.AddrPort, h Header, enc, tmp []byte) (any, error) {
out, ok := p.ControlCipher.Decrypt(enc, tmp)
if !ok {
return nil, errDecryptionFailed
}
if p.dupCheck.IsDup(h.Counter) {
return nil, errDuplicateSeqNum
}
msg, err := parseControlMsg(h.SourceIP, fromAddr, out)
if err != nil {
return nil, err
}
return msg, nil
}
// ----------------------------------------------------------------------------
type routingTable struct {
// The LocalIP is the configured IP address of the local peer on the VPN.
//
// This value is constant.
LocalIP byte
// The LocalAddr is the configured local public address of the peer on the
// internet. If LocalAddr.IsValid(), then the local peer has a public
// address.
//
// This value is constant.
LocalAddr netip.AddrPort
// The remote peer configurations. These are updated by
Peers [256]remotePeer
// The current relay's VPN IP address, or zero if no relay is available.
RelayIP byte
}
func newRoutingTable(localIP byte, localAddr netip.AddrPort) routingTable {
rt := routingTable{
LocalIP: localIP,
LocalAddr: localAddr,
}
for i := range rt.Peers {
counter := uint64(time.Now().Unix()<<30 + 1)
rt.Peers[i] = remotePeer{
localIP: localIP,
IP: byte(i),
counter: &counter,
dupCheck: newDupCheck(0),
}
}
return rt
}
func (rt *routingTable) GetRelay() (remotePeer, bool) {
relay := rt.Peers[rt.RelayIP]
return relay, relay.Up && relay.Direct
}

View File

@ -1,169 +0,0 @@
package peer
import (
"bytes"
"reflect"
"testing"
)
func TestRemotePeer_DecryptDataPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
dec, err := peer1.DecryptDataPacket(h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(orig, dec) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptDataPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
for range 2048 {
_, err := peer1.DecryptDataPacket(h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(enc)
}
}
}
func TestRemotePeer_DecryptDataPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
orig := RandPacket()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
enc := peer2.EncryptDataPacket(2, orig, newBuf())
h := parseHeader(enc)
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptDataPacket(h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf())
if err != nil {
t.Fatal(err)
}
dec, ok := ctrlMsg.(controlMsg[packetProbe])
if !ok {
t.Fatal(ctrlMsg)
}
if dec.SrcIP != 1 || dec.SrcAddr != p1.RT.Load().LocalAddr {
t.Fatal(dec)
}
if !reflect.DeepEqual(dec.Packet, orig) {
t.Fatal(dec)
}
}
func TestRemotePeer_DecryptControlPacket_packetAltered(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
for range 2048 {
ctrlMsg, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, ModifyPacket(enc), newBuf())
if err == nil {
t.Fatal(ctrlMsg)
}
}
}
func TestRemotePeer_DecryptControlPacket_duplicateSequenceNumber(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := packetProbe{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err != nil {
t.Fatal(err)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}
func TestRemotePeer_DecryptControlPacket_unknownPacketType(t *testing.T) {
p1, p2, _ := NewPeersForTesting()
peer2 := p1.RT.Load().Peers[2]
peer1 := p2.RT.Load().Peers[1]
orig := UnknownControlPacket{TraceID: newTraceID()}
enc := peer2.EncryptControlPacket(orig, newBuf(), newBuf())
h := parseHeader(enc)
if h.DestIP != 2 || h.SourceIP != 1 {
t.Fatal(h)
}
if _, err := peer1.DecryptControlPacket(p1.RT.Load().LocalAddr, h, enc, newBuf()); err == nil {
t.Fatal(err)
}
}

View File

@ -1,162 +0,0 @@
package peer
import (
"net/netip"
"time"
)
type sentProbe struct {
SentAt time.Time
Addr netip.AddrPort
}
type stateClient struct {
*peerData
lastSeen time.Time
syn packetSyn
probes map[uint64]sentProbe
}
func enterStateClient(data *peerData) peerState {
ip, ipValid := netip.AddrFromSlice(data.peer.PublicIP)
data.staged.Relay = data.peer.Relay && ipValid
data.staged.Direct = ipValid
data.staged.DirectAddr = netip.AddrPortFrom(ip, data.peer.Port)
data.publish(data.staged)
state := &stateClient{
peerData: data,
lastSeen: time.Now(),
syn: packetSyn{
TraceID: newTraceID(),
SharedKey: data.staged.DataCipher.Key(),
Direct: data.staged.Direct,
PossibleAddrs: data.pubAddrs.Get(),
},
probes: map[uint64]sentProbe{},
}
state.Send(state.staged, state.syn)
data.pingTimer.Reset(pingInterval)
state.logf("==> Client")
return state
}
func (s *stateClient) logf(str string, args ...any) {
s.peerData.logf("CLNT | "+str, args...)
}
func (s *stateClient) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetAck]:
s.onAck(msg)
case controlMsg[packetProbe]:
return s.onProbe(msg)
case controlMsg[packetLocalDiscovery]:
s.onLocalDiscovery(msg)
case pingTimerMsg:
return s.onPingTimer()
default:
s.logf("Ignoring message: %v", raw)
}
return s
}
func (s *stateClient) onAck(msg controlMsg[packetAck]) {
if msg.Packet.TraceID != s.syn.TraceID {
return
}
s.lastSeen = time.Now()
if !s.staged.Up {
s.staged.Up = true
s.publish(s.staged)
s.logf("Got ACK.")
}
if s.staged.Direct {
s.pubAddrs.Store(msg.Packet.ToAddr)
return
}
// Relayed below.
s.cleanProbes()
for _, addr := range msg.Packet.PossibleAddrs {
if !addr.IsValid() {
break
}
s.sendProbeTo(addr)
}
}
func (s *stateClient) onPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval {
if s.staged.Up {
s.logf("Timeout.")
}
return initPeerState(s.peerData, s.peer)
}
s.Send(s.staged, s.syn)
return s
}
func (s *stateClient) onProbe(msg controlMsg[packetProbe]) peerState {
if s.staged.Direct {
return s
}
s.cleanProbes()
sent, ok := s.probes[msg.Packet.TraceID]
if !ok {
return s
}
s.staged.Direct = true
s.staged.DirectAddr = sent.Addr
s.publish(s.staged)
s.syn.TraceID = newTraceID()
s.syn.Direct = true
s.Send(s.staged, s.syn)
s.logf("Successful probe to %v.", sent.Addr)
return s
}
func (s *stateClient) onLocalDiscovery(msg controlMsg[packetLocalDiscovery]) {
if s.staged.Direct {
return
}
// The source port will be the multicast port, so we'll have to
// construct the correct address using the peer's listed port.
addr := netip.AddrPortFrom(msg.SrcAddr.Addr(), s.peer.Port)
s.sendProbeTo(addr)
}
func (s *stateClient) cleanProbes() {
for key, sent := range s.probes {
if time.Since(sent.SentAt) > pingInterval {
delete(s.probes, key)
}
}
}
func (s *stateClient) sendProbeTo(addr netip.AddrPort) {
probe := packetProbe{TraceID: newTraceID()}
s.probes[probe.TraceID] = sentProbe{
SentAt: time.Now(),
Addr: addr,
}
s.logf("Probing %v...", addr)
s.SendTo(probe, addr)
}

View File

@ -1,193 +0,0 @@
package peer
import (
"testing"
"time"
)
func TestStateClient_peerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestStateClient_initialPackets(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, len(h.Sent), 2)
assertType[packetInit](t, h.Sent[0].Packet)
assertType[packetSyn](t, h.Sent[1].Packet)
}
func TestStateClient_onAck_incorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: newTraceID()},
}
h.OnAck(ack)
// Nothing should have happened.
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onAck_direct_downToUp(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
assertEqual(t, len(h.Sent), 2)
syn := assertType[packetSyn](t, h.Sent[1].Packet)
h.Sent = h.Sent[:0]
assertEqual(t, h.Published.Up, false)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
h.OnAck(ack)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onAck_relayed_sendsProbes(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
assertEqual(t, len(h.Sent), 2)
syn := assertType[packetSyn](t, h.Sent[1].Packet)
h.Sent = h.Sent[:0]
assertEqual(t, h.Published.Up, false)
ack := controlMsg[packetAck]{
Packet: packetAck{TraceID: syn.TraceID},
}
ack.Packet.PossibleAddrs[0] = addrPort4(1, 2, 3, 4, 100)
ack.Packet.PossibleAddrs[1] = addrPort4(2, 3, 4, 5, 200)
h.OnAck(ack)
assertEqual(t, len(h.Sent), 2)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, ack.Packet.PossibleAddrs[0])
assertType[packetProbe](t, h.Sent[1].Packet)
assertEqual(t, h.Sent[1].Peer.DirectAddr, ack.Packet.PossibleAddrs[1])
}
func TestStateClient_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
h.OnPingTimer()
assertEqual(t, len(h.Sent), 1)
assertType[*stateClient](t, h.State)
assertType[packetSyn](t, h.Sent[0].Packet)
}
func TestStateClient_onPing_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
state := assertType[*stateClient](t, h.State)
state.lastSeen = time.Now().Add(-2 * timeoutInterval)
state.staged.Up = true
h.OnPingTimer()
newState := assertType[*stateClientInit](t, h.State)
assertEqual(t, newState.staged.Up, false)
assertEqual(t, len(h.Sent), 1)
assertType[packetInit](t, h.Sent[0].Packet)
}
func TestStateClient_onProbe_direct(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
probe := controlMsg[packetProbe]{
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.OnProbe(probe)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onProbe_noMatch(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
probe := controlMsg[packetProbe]{
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.OnProbe(probe)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onProbe_directUpgrade(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
state := assertType[*stateClient](t, h.State)
traceID := newTraceID()
state.probes[traceID] = sentProbe{
SentAt: time.Now(),
Addr: addrPort4(1, 2, 3, 4, 500),
}
probe := controlMsg[packetProbe]{
Packet: packetProbe{TraceID: traceID},
}
assertEqual(t, h.Published.Direct, false)
h.Sent = h.Sent[:0]
h.OnProbe(probe)
assertEqual(t, h.Published.Direct, true)
assertEqual(t, len(h.Sent), 1)
assertType[packetSyn](t, h.Sent[0].Packet)
}
func TestStateClient_onLocalDiscovery_direct(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientDirect(t)
h.Sent = h.Sent[:0]
pkt := controlMsg[packetLocalDiscovery]{
Packet: packetLocalDiscovery{},
}
h.OnLocalDiscovery(pkt)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 0)
}
func TestStateClient_onLocalDiscovery_relayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientRelayed(t)
h.Sent = h.Sent[:0]
pkt := controlMsg[packetLocalDiscovery]{
SrcAddr: addrPort4(1, 2, 3, 4, 500),
Packet: packetLocalDiscovery{},
}
h.OnLocalDiscovery(pkt)
assertType[*stateClient](t, h.State)
assertEqual(t, len(h.Sent), 1)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, addrPort4(1, 2, 3, 4, 456))
}

View File

@ -1,104 +0,0 @@
package peer
import (
"net/netip"
"time"
)
type stateClientInit struct {
*peerData
startedAt time.Time
traceID uint64
}
func enterStateClientInit(data *peerData) peerState {
ip, ipValid := netip.AddrFromSlice(data.peer.PublicIP)
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = ipValid
data.staged.DirectAddr = netip.AddrPortFrom(ip, data.peer.Port)
data.staged.PubSignKey = data.peer.PubSignKey
data.staged.ControlCipher = newControlCipher(data.privKey, data.peer.PubKey)
data.staged.DataCipher = newDataCipher()
data.publish(data.staged)
state := &stateClientInit{
peerData: data,
startedAt: time.Now(),
traceID: newTraceID(),
}
state.sendInit()
data.pingTimer.Reset(pingInterval)
state.logf("==> ClientInit")
return state
}
func (s *stateClientInit) logf(str string, args ...any) {
s.peerData.logf("INIT | "+str, args...)
}
func (s *stateClientInit) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
return s.onInit(msg)
case controlMsg[packetSyn]:
s.logf("Unexpected SYN")
return s
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
return s
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
return s.onPing()
default:
s.logf("Ignoring message: %#v", raw)
return s
}
}
func (s *stateClientInit) onInit(msg controlMsg[packetInit]) peerState {
if msg.Packet.TraceID != s.traceID {
s.logf("Invalid trace ID on INIT.")
return s
}
s.logf("Got INIT version %d.", msg.Packet.Version)
return enterStateClient(s.peerData)
}
func (s *stateClientInit) onPing() peerState {
if time.Since(s.startedAt) < timeoutInterval {
s.sendInit()
return s
}
if s.staged.Direct {
s.staged.Direct = false
s.publish(s.staged)
s.startedAt = time.Now()
s.sendInit()
s.logf("Direct connection failed. Attempting indirect connection.")
return s
}
s.logf("Timeout.")
return initPeerState(s.peerData, s.peer)
}
func (s *stateClientInit) sendInit() {
s.traceID = newTraceID()
init := packetInit{
TraceID: s.traceID,
Direct: s.staged.Direct,
Version: version,
}
s.Send(s.staged, init)
}

View File

@ -1,92 +0,0 @@
package peer
import (
"testing"
"time"
)
func TestPeerState_ClientInit_initWithIncorrectTraceID(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
init := assertType[packetInit](t, h.Sent[0].Packet)
init.TraceID = newTraceID()
h.OnInit(controlMsg[packetInit]{Packet: init})
assertType[*stateClientInit](t, h.State)
}
func TestPeerState_ClientInit_init(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{Packet: init})
assertType[*stateClient](t, h.State)
}
func TestPeerState_ClientInit_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
// Should have sent the first init packet.
assertEqual(t, len(h.Sent), 1)
h.Sent = h.Sent[:0]
for range 3 {
h.OnPingTimer()
}
assertEqual(t, len(h.Sent), 3)
for i := range h.Sent {
assertType[packetInit](t, h.Sent[i].Packet)
}
}
func TestPeerState_ClientInit_onPingTimeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
state := assertType[*stateClientInit](t, h.State)
state.startedAt = time.Now().Add(-2 * timeoutInterval)
assertEqual(t, state.staged.Direct, true)
h.OnPingTimer()
// Should now try indirect connection.
state = assertType[*stateClientInit](t, h.State)
assertEqual(t, state.staged.Direct, false)
// Should re-initialize the peer after another timeout, so should be direct
// again.
state.startedAt = time.Now().Add(-2 * timeoutInterval)
h.OnPingTimer()
assertEqual(t, state.staged.Direct, true)
}
func TestPeerState_ClientInit_onPeerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
h.PeerUpdate(nil)
// Should have moved into the client state due to timeout.
assertType[*stateDisconnected](t, h.State)
}
func TestPeerState_ClientInit_ignoreMessage(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigClientInit(t)
h.OnProbe(controlMsg[packetProbe]{})
// Shouldn't do anything.
assertType[*stateClientInit](t, h.State)
}

View File

@ -1,50 +0,0 @@
package peer
import "net/netip"
type stateDisconnected struct {
*peerData
}
func enterStateDisconnected(data *peerData) peerState {
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = false
data.staged.DirectAddr = netip.AddrPort{}
data.staged.PubSignKey = nil
data.staged.ControlCipher = nil
data.staged.DataCipher = nil
data.publish(data.staged)
data.pingTimer.Stop()
return &stateDisconnected{data}
}
func (s *stateDisconnected) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
s.logf("Unexpected INIT")
return s
case controlMsg[packetSyn]:
s.logf("Unexpected SYN")
return s
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
s.logf("Unexpected probe")
return s
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
s.logf("Unexpected ping")
return s
default:
s.logf("Ignoring message: %#v", raw)
return s
}
}

View File

@ -1,136 +0,0 @@
package peer
import (
"net/netip"
"time"
)
type stateServer struct {
*peerData
lastSeen time.Time
synTraceID uint64 // Last syn trace ID.
}
func enterStateServer(data *peerData) peerState {
data.staged.Up = false
data.staged.Relay = false
data.staged.Direct = false
data.staged.DirectAddr = netip.AddrPort{}
data.staged.PubSignKey = data.peer.PubSignKey
data.staged.ControlCipher = newControlCipher(data.privKey, data.peer.PubKey)
data.staged.DataCipher = nil
data.publish(data.staged)
data.pingTimer.Reset(pingInterval)
state := &stateServer{
peerData: data,
lastSeen: time.Now(),
}
state.logf("==> Server")
return state
}
func (s *stateServer) logf(str string, args ...any) {
s.peerData.logf("SRVR | "+str, args...)
}
func (s *stateServer) OnMsg(raw any) peerState {
switch msg := raw.(type) {
case peerUpdateMsg:
return initPeerState(s.peerData, msg.Peer)
case controlMsg[packetInit]:
return s.onInit(msg)
case controlMsg[packetSyn]:
return s.onSyn(msg)
case controlMsg[packetAck]:
s.logf("Unexpected ACK")
return s
case controlMsg[packetProbe]:
return s.onProbe(msg)
case controlMsg[packetLocalDiscovery]:
return s
case pingTimerMsg:
return s.onPingTimer()
default:
s.logf("Unexpected message: %#v", raw)
return s
}
}
func (s *stateServer) onInit(msg controlMsg[packetInit]) peerState {
s.staged.Up = false
s.staged.Direct = msg.Packet.Direct
s.staged.DirectAddr = msg.SrcAddr
s.publish(s.staged)
init := packetInit{
TraceID: msg.Packet.TraceID,
Direct: s.staged.Direct,
Version: version,
}
s.Send(s.staged, init)
return s
}
func (s *stateServer) onSyn(msg controlMsg[packetSyn]) peerState {
s.lastSeen = time.Now()
p := msg.Packet
// Before we can respond to this packet, we need to make sure the
// route is setup properly.
//
// The client will update the syn's TraceID whenever there's a change.
// The server will follow the client's request.
if p.TraceID != s.synTraceID || !s.staged.Up {
s.synTraceID = p.TraceID
s.staged.Up = true
s.staged.Direct = p.Direct
s.staged.DataCipher = newDataCipherFromKey(p.SharedKey)
s.staged.DirectAddr = msg.SrcAddr
s.publish(s.staged)
s.logf("Got SYN.")
}
// Always respond.
s.Send(s.staged, packetAck{
TraceID: p.TraceID,
ToAddr: s.staged.DirectAddr,
PossibleAddrs: s.pubAddrs.Get(),
})
if p.Direct {
return s
}
// Send probes if not a direct connection.
for _, addr := range msg.Packet.PossibleAddrs {
if !addr.IsValid() {
break
}
s.logf("Probing %v...", addr)
s.SendTo(packetProbe{TraceID: newTraceID()}, addr)
}
return s
}
func (s *stateServer) onProbe(msg controlMsg[packetProbe]) peerState {
if msg.SrcAddr.IsValid() {
s.logf("Probe response %v...", msg.SrcAddr)
s.SendTo(packetProbe{TraceID: msg.Packet.TraceID}, msg.SrcAddr)
}
return s
}
func (s *stateServer) onPingTimer() peerState {
if time.Since(s.lastSeen) > timeoutInterval && s.staged.Up {
s.staged.Up = false
s.publish(s.staged)
s.logf("Timeout.")
}
return s
}

View File

@ -1,164 +0,0 @@
package peer
import (
"testing"
"time"
)
func TestStateServer_peerUpdate(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
h.PeerUpdate(nil)
assertType[*stateDisconnected](t, h.State)
}
func TestStateServer_onInit(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
msg := controlMsg[packetInit]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetInit{
TraceID: newTraceID(),
Direct: true,
Version: 4,
},
}
h.OnInit(msg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetInit](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
assertEqual(t, resp.Version, version)
}
func TestStateServer_onSynDirect(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Public(t)
msg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetSyn{
TraceID: newTraceID(),
Direct: true,
},
}
msg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 1000)
msg.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 2000)
h.OnSyn(msg)
assertEqual(t, len(h.Sent), 1)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
}
func TestStateServer_onSynRelayed(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetSyn]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 1000),
Packet: packetSyn{
TraceID: newTraceID(),
},
}
msg.Packet.PossibleAddrs[0] = addrPort4(1, 1, 1, 1, 1000)
msg.Packet.PossibleAddrs[1] = addrPort4(1, 1, 1, 2, 2000)
h.OnSyn(msg)
assertEqual(t, len(h.Sent), 3)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
resp := assertType[packetAck](t, h.Sent[0].Packet)
assertEqual(t, msg.Packet.TraceID, resp.TraceID)
for i, pkt := range h.Sent[1:] {
assertEqual(t, pkt.Peer.DirectAddr, msg.Packet.PossibleAddrs[i])
assertType[packetProbe](t, pkt.Packet)
}
}
func TestStateServer_onProbe(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetProbe]{
SrcIP: 3,
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.Sent = h.Sent[:0]
h.OnProbe(msg)
assertEqual(t, len(h.Sent), 0)
}
func TestStateServer_onProbe_valid(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetProbe]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 100),
Packet: packetProbe{
TraceID: newTraceID(),
},
}
h.Sent = h.Sent[:0]
h.OnProbe(msg)
assertEqual(t, len(h.Sent), 1)
assertType[packetProbe](t, h.Sent[0].Packet)
assertEqual(t, h.Sent[0].Peer.DirectAddr, msg.SrcAddr)
}
func TestStateServer_onPing(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
h.Sent = h.Sent[:0]
h.OnPingTimer()
assertEqual(t, len(h.Sent), 0)
assertType[*stateServer](t, h.State)
}
func TestStateServer_onPing_timeout(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
h.Sent = h.Sent[:0]
state := assertType[*stateServer](t, h.State)
state.staged.Up = true
state.lastSeen = time.Now().Add(-2 * timeoutInterval)
h.OnPingTimer()
state = assertType[*stateServer](t, h.State)
assertEqual(t, len(h.Sent), 0)
assertEqual(t, state.staged.Up, false)
}
func TestStateServer_onLocalDiscovery(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetLocalDiscovery]{
SrcIP: 3,
SrcAddr: addrPort4(1, 2, 3, 4, 100),
}
h.OnLocalDiscovery(msg)
assertType[*stateServer](t, h.State)
}
func TestStateServer_onAck(t *testing.T) {
h := NewPeerStateTestHarness()
h.ConfigServer_Relayed(t)
msg := controlMsg[packetAck]{}
h.OnAck(msg)
assertType[*stateServer](t, h.State)
}

View File

@ -1,151 +0,0 @@
package peer
import (
"net/netip"
"testing"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
type PeerStateControlMsg struct {
Peer remotePeer
Packet any
}
type PeerStateTestHarness struct {
data *peerData
State peerState
Published remotePeer
Sent []PeerStateControlMsg
}
func NewPeerStateTestHarness() *PeerStateTestHarness {
h := &PeerStateTestHarness{}
keys := generateKeys()
state := &peerData{
publish: func(rp remotePeer) {
h.Published = rp
},
sendControlPacket: func(rp remotePeer, pkt marshaller) {
h.Sent = append(h.Sent, PeerStateControlMsg{rp, pkt})
},
pingTimer: time.NewTicker(pingInterval),
localIP: 2,
remoteIP: 3,
privKey: keys.PrivKey,
pubAddrs: newPubAddrStore(netip.AddrPort{}),
limiter: ratelimiter.New(ratelimiter.Config{
FillPeriod: 20 * time.Millisecond,
MaxWaitCount: 1,
}),
}
h.data = state
h.State = enterStateDisconnected(state)
return h
}
func (h *PeerStateTestHarness) PeerUpdate(p *m.Peer) {
h.State = h.State.OnMsg(peerUpdateMsg{p})
}
func (h *PeerStateTestHarness) OnInit(msg controlMsg[packetInit]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnSyn(msg controlMsg[packetSyn]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnAck(msg controlMsg[packetAck]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnProbe(msg controlMsg[packetProbe]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnLocalDiscovery(msg controlMsg[packetLocalDiscovery]) {
h.State = h.State.OnMsg(msg)
}
func (h *PeerStateTestHarness) OnPingTimer() {
h.State = h.State.OnMsg(pingTimerMsg{})
}
func (h *PeerStateTestHarness) ConfigServer_Public(t *testing.T) *stateServer {
keys := generateKeys()
state := h.State.(*stateDisconnected)
state.localAddr = addrPort4(1, 1, 1, 2, 200)
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 1, 1, 3},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigServer_Relayed(t *testing.T) *stateServer {
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateServer](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientInit(t *testing.T) *stateClientInit {
// Remote IP should be less than local IP.
h.data.localIP = 4
keys := generateKeys()
peer := &m.Peer{
PeerIP: 3,
PublicIP: []byte{1, 2, 3, 4},
Port: 456,
PubKey: keys.PubKey,
PubSignKey: keys.PubSignKey,
}
h.PeerUpdate(peer)
assertEqual(t, h.Published.Up, false)
return assertType[*stateClientInit](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientDirect(t *testing.T) *stateClient {
h.ConfigClientInit(t)
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{
Packet: init,
})
return assertType[*stateClient](t, h.State)
}
func (h *PeerStateTestHarness) ConfigClientRelayed(t *testing.T) *stateClient {
h.ConfigClientInit(t)
state := assertType[*stateClientInit](t, h.State)
state.peer.PublicIP = nil // Force relay.
init := assertType[packetInit](t, h.Sent[0].Packet)
h.OnInit(controlMsg[packetInit]{
Packet: init,
})
return assertType[*stateClient](t, h.State)
}

View File

@ -1,109 +0,0 @@
package peer
import (
"fmt"
"log"
"net/netip"
"strings"
"time"
"vppn/m"
"git.crumpington.com/lib/go/ratelimiter"
)
type peerState interface {
OnMsg(raw any) peerState
}
// ----------------------------------------------------------------------------
type peerData struct {
// Output.
publish func(remotePeer)
sendControlPacket func(remotePeer, marshaller)
pingTimer *time.Ticker
// Immutable data.
localIP byte
remoteIP byte
privKey []byte
localAddr netip.AddrPort // If valid, then local peer is publicly accessible.
pubAddrs *pubAddrStore
// The purpose of this state machine is to manage the RemotePeer object,
// publishing it as necessary.
staged remotePeer // Local copy of shared data. See publish().
// Mutable peer data.
peer *m.Peer
// We rate limit per remote endpoint because if we don't we tend to lose
// packets.
limiter *ratelimiter.Limiter
}
func (s *peerData) logf(format string, args ...any) {
b := strings.Builder{}
name := ""
if s.peer != nil {
name = s.peer.Name
}
b.WriteString(fmt.Sprintf("%03d", s.remoteIP))
b.WriteString(fmt.Sprintf("%30s: ", name))
if s.staged.Direct {
b.WriteString("DIRECT | ")
} else {
b.WriteString("RELAYED | ")
}
if s.staged.Up {
b.WriteString("UP | ")
} else {
b.WriteString("DOWN | ")
}
log.Printf(b.String()+format, args...)
}
// ----------------------------------------------------------------------------
func (s *peerData) SendTo(pkt marshaller, addr netip.AddrPort) {
if !addr.IsValid() {
return
}
route := s.staged
route.Direct = true
route.DirectAddr = addr
s.Send(route, pkt)
}
func (s *peerData) Send(peer remotePeer, pkt marshaller) {
if err := s.limiter.Limit(); err != nil {
s.logf("Rate limited.")
return
}
s.sendControlPacket(peer, pkt)
}
func initPeerState(data *peerData, peer *m.Peer) peerState {
data.peer = peer
if peer == nil {
return enterStateDisconnected(data)
}
if _, isValid := netip.AddrFromSlice(peer.PublicIP); isValid {
if data.localAddr.IsValid() && data.localIP < data.remoteIP {
return enterStateServer(data)
}
return enterStateClientInit(data)
}
if data.localAddr.IsValid() || data.localIP < data.remoteIP {
return enterStateServer(data)
}
return enterStateClientInit(data)
}